首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I consider stationary axially symmetric solutions of the Einstein–Maxwell equations. These show that, in general, time-independent electric and magnetic fields acting together cause rotational effects in the spacetime. An electric charge placed on the axis of a magnetic dipole induces a region of closed timelike curves.  相似文献   

2.
The Klein–Fock–Gordon equation is solved for a 2D pion moving in a constant uniform magnetic field. A relativistic energy spectrum is calculated for fixed values of the angular momentum and magnetic field Н. An analysis of the results of these calculations allows us to conclude that the Klein–Fock–Gordon equation, unlike the Schr?dinger equation, cannot describe the energy of the particle s-state in the magnetic field. It is elucidated that a correction for the relativistic energy level caused by the constant magnetic field is noticeable for the magnetic field H > 100. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 91–96, March, 2009.  相似文献   

3.
M.G. Garcia  A.S. de Castro   《Annals of Physics》2009,324(11):2372-2384
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schrödinger-like equation with an effective Rosen–Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and more efficient problem of solving an irrational algebraic equation.  相似文献   

4.
We find new classes of exact solutions to the Einstein–Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein–Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.  相似文献   

5.
The Lambda-renormalized Einstein–Schrödinger theory is a modification of the original Einstein–Schrödinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein– Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of d × d Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein–Maxwell–Yang–Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein–Maxwell–Yang–Mills theory in that the extra terms in the field equations are < 10?13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg–Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.  相似文献   

6.
We modify the Einstein–Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total ΛΛ z Λ b matches measurement. The resulting theory becomes exactly Einstein–Maxwell theory in the limit as |Λ z | → ∞. For |Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10?16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein–Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein–Infeld–Hoffmann (EIH) equations of motion match the equations of motion for Einstein–Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein–Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner–Nordström solution except for additional terms which are ~10?66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein–Maxwell theory.  相似文献   

7.
Following the technique of Müller zum Hagen (Proc. Camb. Phil. Soc. 67: 415–421, 1970) we show that strictly static and strictly stationary solutions of the Einstein–Maxwell equations are analytic in harmonic coordinates. This holds whether or not the Maxwell field inherits the symmetry.  相似文献   

8.
Aether theory is introduced to implement the violation of the Lorentz invariance in general relativity. For this purpose a unit timelike vector field is introduced to the theory in addition to the metric tensor. Aether theory contains four free parameters which satisfy some inequalities in order that the theory to be consistent with the observations. We show that the Gödel type of metrics of general relativity are also exact solutions of the Einstein–aether theory. The only field equations are the 3D Maxwell field equations and the parameters are left free except c 1c 3 = 1.  相似文献   

9.
The original Rainich theory for the non-null Einstein–Maxwell solutions consists of a set of algebraic conditions and the Rainich (differential) equation. We show here that the subclass of type D aligned solutions can be characterized just by algebraic restrictions.  相似文献   

10.
We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.  相似文献   

11.
Orbits of test particles and light rays are an important tool to study the properties of space-time metrics. Here we systematically study the properties of the gravitational field of a globally regular magnetic monopole in terms of the geodesics of test particles and light. The gravitational field depends on two dimensionless parameters, defined as ratios of the characteristic mass scales present. For critical values of these parameters the resulting metric coefficients develop a singular behavior, which has profound influence on the properties of the resulting space-time and which is clearly reflected in the orbits of the test particles and light rays.  相似文献   

12.
Application of the 5-dimensional coordinate transformations in the 5-dimensional theory lead us to some new solutions for the 4-dimensional Einstein–Maxwell equations and the relevant scaler equation. From the Kerr solution we derive the corresponding solution. And we propose a new method to solve the usual 4-dimensional Einstein–Maxwell equations and the scalar equation, illustrating by three examples.  相似文献   

13.
A simple derivation of a meaningful, manifestly covariant inner product for real Klein—Gordon (KG) fields with positive semi-definite norm is provided, which turns out — assuming a symmetric bilinear form — to be the real-KG-field limit of the inner product for complex KG fields reviewed by A. Mostafazadeh and F. Zamani in December 2003, and February 2006 (quant-ph/0312078, quant-ph/0602151, quant-ph/0602161). It is explicitly shown that the positive semi-definite norm associated with the derived inner product for real KG fields measures the number of active positive and negative energy Fourier-modes of the real KG field on the relativistic mass shell. The very existence of an inner product with positive semi-definite norm for the considered real, i.e. neutral, KG fields shows that the metric operator entering the inner product does not contain the charge-conjugation operator. This observation sheds some additional light on the meaning of the C operator in the CPT inner product of PT-symmetric quantum mechanics defined by C.M. Bender, D.C. Brody and H.F. Jones.  相似文献   

14.
Non-minimal interactions in the pp-wave Einstein–Yang–Mills–Higgs (EYMH) model are shown to give rise to color cross-effects analogous to the magneto-electricity in the Maxwell theory. In order to illustrate the significance of these color cross-effects, we reconstruct the effective (associated, color, and color-acoustic) metrics for the pp-wave non-minimal seven-parameter EYMH model with parallel gauge and scalar background fields. Then these metrics are used as hints for obtaining explicit exact solutions of the non-minimally extended Yang–Mills and Higgs equations for the test fields propagating in the vacuum interacting with curvature. The influence of the non-minimal coupling on the test particle motion is interpreted in terms of the so-called trapped surfaces, introduced in the Analog Gravity theory.  相似文献   

15.
While there exist now formulations of initial boundary value problems for Einstein’s field equations which are well posed and preserve constraints and gauge conditions, the question of geometric uniqueness remains unresolved. For two different approaches we discuss how this difficulty arises under general assumptions. So far it is not known whether it can be overcome without imposing conditions on the geometry of the boundary. We point out a natural and important class of initial boundary value problems which may offer possibilities to arrive at a fully covariant formulation.  相似文献   

16.
K S Virbhadra 《Pramana》1993,40(4):273-275
An exact solution of Einstein’s equations is interpreted as describing the gravitational field of a tachyon in a de Sitter universe. Switching off the cosmological constant yields the gravitational field of a tachyon in flat spacetime background.  相似文献   

17.
The effects, upon the Klein–Gordon field, of nonconformal stochastic metric fluctuations, are analyzed. It will be shown that these fluctuations allow us to consider an effective mass, i.e., the mass detected in a laboratory is not the parameter appearing in the Klein–Gordon equation, but a function of this parameter and of the fluctuations of the metric. In other words, in analogy to the case of a nonrelativistic electron in interaction with a quantized electromagnetic field, we may speak of a bare mass, where the observed mass shows a dependence upon the stochastic terms included in the metric. Afterwards, we prove, resorting to the influence functional, that the energy–momentum tensor of the Klein–Gordon field inherites this stochastic behavior, and that this feature provokes decoherence upon a particle immersed in the region where this tensor is present.  相似文献   

18.
The scattering theory for the Klein Gordon equation, with time-dependent potential and in a non-static space-time, is considered. Using the Klein Gordon equation formulated in the Hubert spaceL 2(R 3) and the Einstein’s relativistic equation in the spaceL 2(R 3, dx) and establishing the equivalence of the vacuum states of their linearized forms in the Hubert spaceL 2(R 3) with the help of unique symmetric symplectic operator, the time evolution unitary operatorU(t) has been fixed for the Klein Gordon equation, incorporating either the positive or negative frequencies, in the infinite dimensional Hubert spaceL 2(R 3).  相似文献   

19.
N. Tankovsky  E. Syrakov 《Ionics》2008,14(6):525-531
The nonlinear differential equations, describing the migration and diffusion of ions in electrolytic cell with blocking electrodes, driven by external electric field, have been solved with the help of a numerical algorithm. Usually, the dynamical equations are simplified by applying the Einstein–Nernst relation between diffusion and mobility, although this relation is valid for stationary, time-independent variables. In the present work, we have introduced correction terms, to take into account transient ion currents when external stepwise voltage is switched on. The correction terms are defined and numerically evaluated. The transient behavior of the system described without corrections is compared to the transients when corrections are applied. The results are examined for different regimes and parameters of the system.  相似文献   

20.
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号