首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, a novel biological affinity separating system called lipid raft stationary phase chromatography (LRSC) was developed. It was employed to screen bioactive components from Chinese gallnut, a traditional Chinese medicine (TCM). The LRSC was prepared by the addition of activated silica to Tris–HCl solution, which contains the isolated lipid rafts of U251 cells. This was followed by agitation, washing, centrifugation and then re-suspension of the residue in another Tris–HCl solution. The lipid rafts possess abundant receptor tyrosine kinase, specifically tropomyosin-related kinase A (TrkA), which is a widely researched anti-tumor drug target. Thus, TrkA provided the LRSC model with the ability to select fractions that specifically interact with it. Using a non-TrkA targeted anti-tumor drug (gemcitabine) and TrkA targeted anti-tumor drugs (lestaurtinib and gefitinib) as controls to evaluate the specific affinity of the LRSC column, the different fractions of Chinese gallnut were subjected to LRSC screening for the identification of anti-tumor components. As a result, the ether fraction of Chinese gallnut manifested desirable affinity properties. The methyl thiazolyl tetrazolium assay confirmed the anti-tumor effect of the screened ether fraction, and more importantly, the ether fraction failed woefully to exhibit its anti-proliferative activity in the presence of TrkA inhibitors (K252a and primary antibody). This further proves the selectivity of LRSC on TrkA-targeted drugs. The LRSC model has, therefore, shown to be of high efficiency and selectivity in screening bioactive components from the complex TCM extracts, thus offering an effective approach for the development of anticancer natural products.  相似文献   

2.
A novel stationary phase of vascular smooth muscle cell membrane chromatography (VSM-CMC) was developed by immobilizing the vascular smooth muscle cell membrane onto the surface of silica and was presented for bioaffinity chromatography. The protein level and Na+, K+-ATP enzymatic activity of the vascular smooth muscle cell membrane stationary phase (VSM-CMSP) were detected. The surface characteristics of the VSM-CMSP were tested using scanning electron microscopy and surface energy spectrometry. The retention characteristics of four dihydropyridines (amlodipine besylate, nicardipine hydrochloride, nitrendipine and nifedipine) were investigated using a VSM-CMSP column (10 mm × 2 mm, I.D.) packed with VSM-CMSP. The logarithm of the capacity factor (logk??) was taken as a measure of the affinities of the calcium antagonists toward the vascular smooth muscle cell membrane and receptors. The surface characteristics of the VSM-CMSP were very different from that of the normal and reversed stationary phase, and the VSM-CMSP was found to have cell membrane activity and chromatographic separation. Moreover, there was a significant correlation between the affinity in the VSM-CMC system and the effect in vitro with respect to the pharmacological effect. It is concluded that the VSM-CMC system can serve as a type of bioaffinity chromatography for studying the interaction between drug molecules and target sites (e.g., receptors) in cell membranes, and for screening active compounds from complex agents.  相似文献   

3.
The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC–MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar‐turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose‐dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs.  相似文献   

4.
The stationary phases of octadecylsilica (ODS) coated with phospholipid have been developed as a model of artificial lipid membranes for liquid chromatographic columns. An ODS column coated with phospholipid can be readily prepared by recycling a solution containing L-alpha-dipalmitoyl-phosphatidylcholine (DPPC) through an ODS column in a closed loop. DPPC becomes absorbed on the ODS surfaces by hydrophobic interaction between the acyl group of DPPC and the octadecyl group of the ODS surfaces. The DPPC column was usable when a mobile phase containing 30% (v/v) acetonitrile was delivered without detachment of the DPPC from the ODS surfaces. The retention behavior of ionic solutes on the DPPC column suggested that the retention was based on both ionic and electrostatic interactions between the solutes and the stationary phase. The retention factors on the DPPC column correlated well with the partition coefficients in liposome systems for alpha-adrenoceptor agonists and beta-blockers, indicating that the partition of solutes between the coated phase and buffer was similar to that in the liposome/water system. The DPPC column can be used in screening studies to predict the binding properties of drugs onto lipid membranes.  相似文献   

5.
High performance liquid chromatography-mass spectrometry is one of the most commonly used strategies for lipid analysis. The development of versatile chromatographic stationary phases to meet the increasing demands for separation of complex lipids is very important. Styrene-maleic acid(SMA) copolymer is an amphiphilic polymer, which has been proven to have the ability to solubilize lipid molecules of various structures. In this study, styrene-maleic anhydride copolymer coated silica was first pr...  相似文献   

6.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

7.
Adopting a stationary phase convention circumvents problematic definition of the boundary between the stationary and the mobile phase in the liquid chromatography, resulting in thermodynamically consistent and reproducible chromatographic data. Three stationary phase definition conventions provide different retention data, but equal selectivity: (i) the complete solid phase moiety; (ii) the solid porous part carrying the active interaction centers; (iii) the volume of the inner column pores. The selective uptake of water from the bulk aqueous‐organic mobile phase significantly affects the volume and the properties of polar stationary phases. Some polar stationary phases provide dual‐mode retention mechanism in aqueous‐organic mobile phases, reversed‐phase in the water‐rich range, and normal‐phase at high concentrations of the organic solvent in water. The linear solvation energy relationship model characterizes the structural contributions of the non‐selective and selective polar interactions both in the water‐rich and organic solvent‐rich mobile phases. The inner‐pore convention provides a single hold‐up volume value for the retention prediction on the dual‐mode columns over the full mobile phase range. Using the dual‐mode monolithic polymethacrylate zwitterionic micro‐columns alternatively in each mode in the first dimension of two‐dimensional liquid chromatography, in combination with a short reversed‐phase column in the second dimension, provides enhanced sample information.  相似文献   

8.
1‐Butyl‐3‐[(3‐trimethoxysilyl)propyl]imidazolium chloride ionic liquid was synthesized and chemically modified onto the inner wall of a fused capillary column as a stationary phase for gas chromatography. The 1‐butyl‐3‐[(3‐trimethoxysilyl)propyl]imidazolium chloride ionic liquid bonded capillary column was evaluated in detail. The results revealed that the ionic liquid bonded capillary column exhibited high column efficiency of 1.08 × 104 plates/m, and good chromatographic separation selectivity (α ) for polar and non‐polar substances, and a good thermal stability between room temperature and 400°C. Moreover, the determination of thermodynamic parameters and the linear solvation energy relationship were further carried out. The results indicated that the chromatographic retention of each probe molecule on the ionic liquid bonded stationary phase was an enthalpy‐driven process, and the system constants of the linear solvation energy relationship signified that the dispersion interaction, the hydrogen bonding acidity and hydrogen bonding basicity were dominant interactions between probes and stationary phase among five interactions during the chromatographic separation. However, the contribution of each specific interaction for the stationary phase is ranked as the dispersion interaction > the hydrogen bonding basicity > the hydrogen bonding acidity.  相似文献   

9.
β‐Adrenergic receptors are important targets for drug discovery. We have developed a new β1‐adrenergic receptor cell membrane chromatography (β1AR‐CMC) with offline ultra‐performance LC (UPLC) and MS method for screening active ingredients from traditional Chinese medicines. In this study, Chinese hamster ovary‐S cells with high β1AR expression levels were established and used to prepare a cell membrane stationary phase in a β1AR‐CMC model. The retention fractions were separated and identified by the UPLC–MS system. The screening results found that isoimperatorin from Rhizoma et Radix Notopterygii was the targeted component that could act on β1AR in similar manner of metoprolol as a control drug. In addition, the biological effects of active component were also investigated in order to search for a new type of β1AR antagonist. It will be a useful method for drug discovery as a leading compound resource.  相似文献   

10.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

11.
Shi  Jie-hua  Xu  Shui-xing  Jia  Qian-qian  Yan  Xiao-qing 《Chromatographia》2013,76(15):1021-1029

A novel cellulose trisphenylcarbamate/1-octyl-3-methylimidazolium tetrafluoroborate [CTPC/[OcMIM]BF4] gas chromatographic stationary phase was prepared and characterized utilizing thermodynamic parameters and LSER methodology. The results revealed that the interaction model of each probe molecule on the CTPC/[OcMIM]BF4 stationary phase was invariable within the temperature range studied because of an excellent linear relationship between lnk and 1/T for each probe molecule. The chromatographic retentions of all probe molecules on the CTPC/[OcMIM]BF4 stationary phase were enthalpy-driven processes. The main interaction forces of the stationary phase with probe molecules are hydrogen bonding interactions, dispersive interactions and dipole–dipole interactions. Moreover, the contribution of each interaction is in the order of hydrogen bonding interaction > dispersive interaction > dipole–dipole interaction. The mixture of CTPC and [OcMIM]BF4 used as capillary gas chromatography stationary phase had high column efficiency and good film-forming ability, which was suitable for the separation of both nonpolar and polar compounds. Particularly the separation efficiencies of aromatic amines on CTPC/[OcMIM]BF4 are superior to those on the commercial SE-54 column.

  相似文献   

12.
A novel cellulose trisphenylcarbamate/1-octyl-3-methylimidazolium tetrafluoroborate [CTPC/[OcMIM]BF4] gas chromatographic stationary phase was prepared and characterized utilizing thermodynamic parameters and LSER methodology. The results revealed that the interaction model of each probe molecule on the CTPC/[OcMIM]BF4 stationary phase was invariable within the temperature range studied because of an excellent linear relationship between lnk and 1/T for each probe molecule. The chromatographic retentions of all probe molecules on the CTPC/[OcMIM]BF4 stationary phase were enthalpy-driven processes. The main interaction forces of the stationary phase with probe molecules are hydrogen bonding interactions, dispersive interactions and dipole–dipole interactions. Moreover, the contribution of each interaction is in the order of hydrogen bonding interaction > dispersive interaction > dipole–dipole interaction. The mixture of CTPC and [OcMIM]BF4 used as capillary gas chromatography stationary phase had high column efficiency and good film-forming ability, which was suitable for the separation of both nonpolar and polar compounds. Particularly the separation efficiencies of aromatic amines on CTPC/[OcMIM]BF4 are superior to those on the commercial SE-54 column.  相似文献   

13.
The overloaded band profiles of the protonated species of propranolol and amitriptyline were recorded under acidic conditions on four classes of stationary phases including a conventional silica/organic hybrid material in reversed‐phase liquid chromatography mode (BEH‐C18), an electrostatic repulsion reversed‐phase liquid chromatography C18 column (BEH‐C18+), a poly(styrene‐divinylbenzene) monolithic column, and a hydrophilic interaction chromatography stationary phase (underivatized BEH). The same amounts of protonated bases per unit volume of stationary phase were injected in each column (16, 47, and 141 μg/cm3). The performance of the propranolol/amitriptyline purification was assessed on the basis of the asymmetry of the recorded band profiles and on the selectivity factor achieved. The results show that the separation performed under reversed‐phase liquid chromatography like conditions (with BEH‐C18, BEH‐C18+, and polymer monolith materials) provide the largest selectivity factors due to the difference in the hydrophobic character of the two compounds. However, they also provide the most distorted overloaded band profiles due to a too small loading capacity. Remarkably, symmetric band profiles were observed with the hydrophilic interaction chromatography column. The larger loading capacity of the hydrophilic interaction chromatography column is due to the accumulation of the protonated bases into the diffuse water layer formed at the surface of the polar adsorbent. This work encourages purifying ionizable compounds on hydrophilic interaction chromatography columns rather than on reversed‐phase liquid chromatography columns.  相似文献   

14.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

15.
A G-protein-coupled receptor-cell-membrane stationary phase (CMSP) has been prepared by immobilizing cell membranes on the surface of silica, as carrier. The resulting HEK293 α 1A adrenoceptor cell-membrane stationary phase can be used for rapid on-line chromatographic determination of potential subtype-selective α 1 -adrenoceptor ligand-binding affinities for α 1 -adrenoceptor subtypes. The objective of the research was to study whether cell lines stably overexpressing subtype receptors could improve the sensitivity and specificity of cell-membrane chromatography (CMC) compared with use of homogenized tissue and cells in primary culture. Effects of mobile-phase ionic strength, sample concentration, and the presence of competitive agents on ligand-receptor interaction in CMSP were also evaluated. We found that cell lines stably overexpressing subtype receptors led to improved sensitivity and specificity in CMC. The technique leads to useful procedures-cell-membrane stationary phases may, for example, facilitate exploration of ligand-receptor interaction and determination of ligand-receptor binding affinity in initial screening and separation of lead compounds or active components in Chinese traditional natural medicine and herbs. This might eventually be an important contribution and an addition to our collection of techniques.  相似文献   

16.
In this study, 3‐diethylamino‐1‐propyne was covalently bonded to the azide‐silica by a click reaction to obtain a novel dual‐function mixed‐mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high‐salt‐concentration mobile phase and weak anion exchange character in a low‐salt‐concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual‐function mixed‐mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed‐mode chromatography stationary phase, a new off‐line two‐dimensional liquid chromatography technology using only a single dual‐function mixed‐mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.  相似文献   

17.
We demonstrate here a promising NMR method that provides evidence for chiral compound selector interaction as a first‐pass screening method. A novel adaptation of commonly used protein‐based screening technologies, this approach relies upon ligand‐to‐stationary phase interaction wherein the stationary phase is tethered to sepharose beads. At only minutes per experiment, this methodology significantly reduces the time required for chiral separation methodology development and complements currently available chromatographic purity technologies.Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
There are various reversed‐phase stationary phases that offer significant differences in selectivity and retention. To investigate different reversed‐phase stationary phases (aqueous stable C18, biphenyl, pentafluorophenyl propyl, and polar‐embedded alkyl) in an automated fashion, commercial software and associated hardware for mobile phase and column selection were used in conjunction with liquid chromatography and a triple quadrupole mass spectrometer detector. A model analyte mixture was prepared using a combination of standards from varying classes of analytes (including drugs, drugs of abuse, amino acids, nicotine, and nicotine‐like compounds). Chromatographic results revealed diverse variations in selectivity and peak shape. Differences in the elution order of analytes on the polar‐embedded alkyl phase for several analytes showed distinct selectivity differences compared to the aqueous C18 phase. The electron‐rich pentafluorophenyl propyl phase showed unique selectivity toward protonated amines. The biphenyl phase provided further changes in selectivity relative to C18 with a methanolic phase, but it behaved very similarly to a C18 when an acetonitrile‐based mobile phase was evaluated. This study shows the value of rapid column screening as an alternative to excessive mobile phase variation to obtain suitable chromatographic settings for analyte separation.  相似文献   

19.
This paper presents a multi‐residue method for direct enantioselective separation of chiral pharmacologically active compounds in environmental matrices. The method is based on chiral liquid chromatography and tandem mass spectrometry detection. Simultaneous chiral discrimination was achieved with a macrocyclic glycopeptide‐based column with antibiotic teicoplanin as a chiral selector working under reverse phase mode. For the first time, enantioresolution was reported for metabolites of ibuprofen: carboxyibuprofen and 2‐hydroxyibuprofen with this chiral stationary phase. Moreover, enantiomers of chloramphenicol, ibuprofen, ifosfamide, indoprofen, ketoprofen, naproxen and praziquantel were also resolved. The overall performance of the method was satisfactory in terms of linearity, precision, accuracy and limits of detection. The method was successfully applied for monitoring of pharmacologically active compounds at enantiomeric level in influent and effluent wastewater and in river water. In addition, the chiral recognition and analytical performance of the teicoplanin‐based column was critically compared with that of the α1‐acid glycoprotein chiral stationary phase. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号