共查询到20条相似文献,搜索用时 0 毫秒
1.
Jia Yu Lihua Zuo Hongjiao Liu Lijuan Zhang Xingjie Guo 《Biomedical chromatography : BMC》2013,27(8):1027-1033
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Yin Xiao Yong Wang Teng‐Teng Ong Liya Ge Swee Ngin Tan David J. Young T. T. Y. Tan Siu‐Choon Ng 《Journal of separation science》2010,33(12):1797-1805
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity. 相似文献
3.
In the past decade, more than 100 different cathinone derivatives slopped over entire Europe due to their enormous popularity. Generally, these novel psychoactive substances are easily available via the internet. This fact leads to various social problems, since cathinones are substances with consciousness‐changing effects and are mainly misused for recreational matters by their consumers. Cathinones possess a chiral center including two enantiomeric forms with potentially different pharmacological behavior. This fact makes analytical method development regarding their chiral separation indispensable. In this study, a chiral capillary zone electrophoresis method for the enantioseparation of 61 cathinone and pyrovalerone derivatives was developed by means of four different β‐cyclodextrin derivatives. As chiral selectors, native β‐cyclodextrin as well as three of its derivatives namely acetyl‐β‐cyclodextrin, 2‐hydroxypropyl‐β‐cyclodextrin, and carboxymethyl‐β‐cyclodextrin were used. The cathinone and pyrovalerone derivatives were either purchased in internet stores or seized by police. As a result, overall 58 of 61 studied substances were partially or baseline separated by at least one of the four chiral selectors using 10 mM of β‐cyclodextrin derivative in a 10 mM sodium phosphate buffer (pH 2.5). Furthermore, the method was found to be suitable for simultaneous enantioseparations, for enantiomeric purity checks and to differentiate between positional isomers. Moreover, an intra‐ and an interday validation was performed successfully for each chiral selector to prove the robustness of the method. 相似文献
4.
《Electrophoresis》2017,38(7):1060-1067
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono‐6‐deoxy‐6‐(3‐methylimidazolium)‐β‐cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β‐cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β‐cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β‐cyclodextrin ionic liquid. The satisfied result demonstrated that the β‐cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. 相似文献
5.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc). 相似文献
6.
《Journal of separation science》2017,40(14):2863-2882
The quinolones are derivatives of oxoquinolines and mostly known for their antibacterial and antiviral activities. Many quinolones are chiral compounds having asymmetric centers and important due to their enantioselective biological activities. In order to study the biological activities of quinolone enantiomers, to control the manufacturing of homochiral drugs and to prepare necessary quantities of pure enantiomers for preclinical or clinical trials, respective chiral separation methods are urgently needed. In this context, the present review discusses chromatographic and electrophoretic methods for the enantioseparation of chiral quinolones and provides some useful information on their physical and pharmaceutical properties. The drawbacks of currently used techniques are revealed and ways to overcome them are outlined. Moreover, recommendations for an optimal choice of a separation protocol are given. 相似文献
7.
Determination of the enantiomeric and diastereomeric impurities of RS‐glycopyrrolate by capillary electrophoresis using sulfated‐β‐cyclodextrin as chiral selectors 下载免费PDF全文
Lihua Zuo Yunfeng Zhao Fenfen Ji Min Zhao Zhen Jiang Xingjie Guo 《Electrophoresis》2014,35(23):3339-3344
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%). 相似文献
8.
Marianne Fillet Isabelle Bechet Gerhard Schomburg Philippe Hubert Jacques Crommen 《Journal of separation science》1996,19(12):669-673
High resolution could be achieved for the enantiomers of acidic drugs, namely, sulindac, fenoprofen, ketoprofen, warfarin, and hexobarbital, in a buffer of pH 3 by the simultaneous addition of uncharged and charged β-cyclodextrin derivatives. The interaction of the analytes with the anionic sulfobutyl ether β-cyclodextrin provides the analytes with an adequate electrophoretic mobility whereas the interaction with various neutral β-cyclodextrins generates high enantioselectivity. Five neutral cyclodextrins, the native β-cyclodextrin, as well as methyl-, dimethyl-, trimethyl- and hydroxypropyl-β-cyclodextrin, were tested to enhance the enantioselectivity of the electrophoretic system. High resolution values and the shortest analysis times for the five drugs tested were achieved in a buffer made of 100 mM phosphoric acid adjusted to pH 3 with triethanolamine and containing dimethyl- or trimethyl-β-cyclodextrin in addition to sulfobutyl ether β-cyclodextrin. 相似文献
9.
Peng Liu Xiaoli Sun Wei He Ru Jiang Pingan Wang Yan Zhao Shengyong Zhang 《Journal of separation science》2009,32(1):125-134
This paper describes an improved access to mono‐6A‐aminoethylamino‐β‐CD (β‐CDen), a very efficient cationic chiral selector for CZE in the separation of eight chiral aromatic vicinal diols. The β‐CDen concentration has a strong influence on the efficiency of enantioseparation. The effects of the pH and concentration of the BGE, the capillary temperature, and the applied voltage on the resolution and separation selectivity have been studied. Excellent chiral resolution was achieved under the optimal conditions of β‐CDen 10 mM, pH 10, 200 mM borate buffer at 15 kV and 20°C within 20 min. Moreover, the developed method was successfully applied to the determination of the enantiomeric purity of the catalytic asymmetric dihydroxylation (AD) reaction products. 相似文献
10.
《Biomedical chromatography : BMC》2017,31(11)
Herein we present the enantioseparation of 10 cardiovascular agents and six bronchiectasis drugs including propranolol, carteolol, metoprolol, atenolol, pindolol, esmolol, bisoprolol, bevantolol, arotinolol, sotalol, clenbuterol, procaterol, bambuterol, tranterol, salbutamol and terbutaline sulfate using carboxymethyl‐β ‐cyclodextrin (CM‐β ‐CD) as chiral selector. To our knowledge, there is no literature about using CM‐β ‐CD for separating carteolol, esmolol, bisoprolol, bevantolol, arotinolol, procaterol, bambuterol and tranterol. During the course of work, changes in pH, CM‐β ‐CD concentration, buffer type and concentration were studied in relation to chiral resolution. Excellent enantiomeric separations were obtained for all 16 compounds, especially for procaterol. An impressive resolution value, up to 17.10, was obtained. In particular, most of them achieved rapid separations within 20 min. Given the fact that enantioseparation results rely on analytes' structural characters, the possible separation mechanisms were discussed. In addition, in order to obtain faster separation for propranolol enantiomers in practical application, the effective length of capillary was innovatively shortened from 45 to 30 cm. After the validation, the method was successfully applied to the enantiomeric purity determination of propranolol in the formulation of drug substances. 相似文献
11.
An ephedrine‐based chiral ionic liquid, (+)‐N,N‐dimethylephedrinium‐bis(trifluoromethanesulfon)imidate ([DMP]+[Tf2N]‐), served as both chiral selector and background electrolyte in nonaqueous capillary electrophoresis. The enantioseparation of rabeprazole and omeprazole was achieved in acetonitrile–methanol (60:40 v/v) containing 60 mm [DMP]+[Tf2N]‐. The influences of separation conditions, including the concentration of [DMP]+[Tf2N]‐, the electrophoretic media and the buffer, on enantioseparation were evaluated. The mechanism of enantioseparation was investigated and discussed. Ion‐pair interaction and hydrogen bonding may be responsible for the main separation mechanism. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
CE coupled with amperometric detection method was developed using ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMImBF4) as additive for the simultaneous detection of clenbuterol (CLB), terbutaline (TER), and ractopamine (RAC) in feed. The effects of detection potential, concentration of EMImBF4, pH, and concentration of the running buffer, separation voltage as well as injection time on the separation and detection of these three β‐agonists were investigated in detail. Under the optimum conditions: the detection potential at 1.05 V, 50 mmol/L Tris‐HAc at pH 8.0 with 0.6% (v/v) EMImBF4, electrokinetic injection 6 s at 16 kV and separation voltage at 16 kV, a baseline separation for these three analytes could be achieved within 11 min. Introduction of EMImBF4 into the running buffer resulted in significant improvement in separation selectivity and enhancement in peak currents for those β‐agonists, especially for TER and RAC, which could not be separated in the running buffer without additive. The method exhibited wide linear range with LOD (S/N = 3) of 2, 1, and 2 nmol/L for CLB, TER, and RAC, respectively. The precision was determined in both intraday (n = 5) and interday (n = 3) assays, and the RSDs for both migration time and peak current were less than 6%. The proposed method was also applied to analyze β‐agonists in feed sample. 相似文献
13.
Chun Lin Wenjun Luo Sheng Zhang Zhenbin Zhang Weiguang Zhang Shengrun Zheng Jun Fan Weishan Li Qing Qin Ziyuan Guo 《Journal of separation science》2010,33(11):1558-1562
Two types of chiral stationary phases for HPLC based on π‐acidic or π‐basic perphenylcarbamoylated β‐CDs were synthesized. The relative structural features of the two effective chiral selectors are discussed and compared in both normal‐phase and RP modes. In addition, the nature and concentration of alcoholic modifiers were varied for optimal separation in normal phase and the structural variation of the analytes was also examined. The results showed that hydrogen bonding, steric effect and π‐acidic–π‐basic interaction contributed greatly to enantioseparation. Upon comparison, some of the differences in the separation behavior of the two types of chiral stationary phases might be due to the π‐acidic or π‐basic phenylcarbamate groups. 相似文献
14.
Lihua Zuo Heng Meng Jingjing Wu Zhen Jiang Shuying Xu Xingjie Guo 《Journal of separation science》2013,36(3):517-523
In this study, the enantioseparation of zopiclone, repaglinide, chlorphenamine maleate, brompheniramine maleate, dioxopromethazine hydrochloride, promethazine hydrochloride, liarozole, carvedilol, homatropine hydrobromide, homatropine methylbromide, venlafaxine, and sibutramine hydrochloride has been investigated using β‐CD in combination with a chiral ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium‐L‐lactate. The influence of the type of IL and its concentration, BGE pH, and chain length of the IL cations on the resolution are discussed. Finally, the proposed method was successfully applied for the chiral impurity determination of eszopiclone in pharmaceutical tablets after validation with respect to accuracy and precision, linearity range, selectivity, repeatability, LOD and LOQ. It is assessed that the chiral impurity determination in the commercial tables is fewer than 0.1%. 相似文献
15.
建立了以非手性离子液体1-正丁基-3-甲基咪唑氯([BMIM]Cl)为手性分离的添加剂、β-环糊精作为手性选择剂的毛细管区带电泳(CZE)分离扑尔敏、氯霉素前体和氧氟沙星3种对映体的方法,并与未添加[BMIM]Cl的CZE分离情况进行了对比研究。发现[BMIM]Cl对手性药物的拆分有协同作用,不仅能够增加对映体的分离度,还能有效地抑制毛细管内壁对样品分子的吸附作用,改善峰形。采用离子液体辅助手性选择剂(尤其是环糊精)的CZE改进方法,为其他毛细管电泳难以分离的手性药物的分离分析提供了新的方法。 相似文献
16.
《Electrophoresis》2018,39(17):2195-2201
A sensitive, fast, and effective method, field‐amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl‐β‐CD (HP‐β‐CD) and tetrabutylammonium‐L‐glutamic acid (TBA‐L‐Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP‐β‐CD, and 10 mM TBA‐L‐Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700–900 folds. Calibration curves were in a good linear relationship within the range of 62.5–5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations. 相似文献
17.
Chiral separation of 19 pairs of amino acid (AA) enantiomers derivatized with 9-fluorenylmethylchloroformate (FMOC) was successfully conducted by capillary electrophoresis using the mixture of beta-CD and sodium taurodeoxycholate (STDC) as selectors. Resolution was considerably superior to that obtained by using either beta-CD or STDC alone. After a systematic inspection, a buffer composed of 150 mM borate and 18% v/v isopropanol at pH 8.0, dissolved with 30 mM beta-CD and 30 mM STDC, was adopted and able to generate baseline resolution (>1.50) for 17 pairs of FMOC-AA enantiomers and somewhat lower resolution for arginine (1.36) and alanine (1.18), respectively. Experimental data revealed that the addition of the second selector did not increase the mobility difference between a pair of enantiomers (Delta mu = mu(D) - mu(L) and the number of theoretical plates (N), but decreased the summed apparent mobility of a pair of enantiomers (Sigma mu = mu(D) - mu(L)), which was mainly due to the decrease of the electroosmotic flow. The variation of Sigma mu was thus the major reason responsible for the improvement of chiral resolution in this study. The result demonstrated that not only the intrinsic selectivity of the selectors was the basis of the chiral separation, but also the non-chiral effect of the selectors, the change of the electroosmotic flow, was an important factor in enhancing the enantioseparation resolution. This study could probably help to explain the reasons for resolution improvement in some dual selectors systems, which are not very clear at present. 相似文献
18.
《Electrophoresis》2018,39(7):941-947
In this paper, β‐cyclodextrin (β‐CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self‐assembly of gold nanoparticles on 3‐mercaptopropyl‐trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β‐cyclodextrin (SH‐β‐CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β‐cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra‐day, inter‐day, and column‐to‐column investigations. 相似文献
19.
Enantioseparation of citalopram analogues with sulfated β‐cyclodextrin by capillary electrophoresis 下载免费PDF全文
Yadi Wang Shusheng Zhang Zachary S. Breitbach Hans Petersen Peter Ellegaard Daniel W. Armstrong 《Electrophoresis》2016,37(5-6):841-848
Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β‐cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed. 相似文献
20.
Yayun Huang Haixia Yu Lou Li Chenwu Zhang Hongfen Zhang Anjia Chen 《Electrophoresis》2016,37(22):3010-3016
This work reported that ionic liquid (IL) ([Bmim] [PF6]) and sulfobutylether‐β‐CD (SBE‐β‐CD) were used as electrolyte additives for the separation and determination of camptothecin (CPT) alkaloids by CZE. Separation parameters such as the buffer type, pH, and concentration of the running buffer, the concentration of SBE‐β‐CD and IL, temperature, and separation voltage were all investigated in order to achieve the maximum possible resolution. The four analytes were baseline separated within 10 min in capillary at the separation voltage of 15 kV with a running buffer consisting of 20 mM borate buffer, 20 mM IL, and 100 mM SBE‐β‐CD at pH 9.0. Under such conditions, good linearity about two orders of magnitudes of peak areas was achieved for the investigated CPT alkaloids with the correlation coefficients ranging from 0.9946 to 0.9985. For all analytes, detection limits (S/N = 3) and quantitation limits (S/N = 10) range from 0.05 to 0.92 μg/mL and 0.17 to 3.06 μg/mL, respectively. The proposed method has not only been successfully applied to the separation and determination of CPT alkaloids but also showed that IL seemed to be a promising additive in CZE separation. 相似文献