首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An HPLC method with DAD detection was developed and validated for the simultaneous determination of zofenopril and hydrochlorothiazide in tablets. The separation was carried out through a gradient elution using an Agilent LiChrospher C18 column (250×4.0 mm id, 5 μm) and a mobile phase consisting of (A) water–TFA (99.9:0.1 v/v) and (B) acetonitrile–TFA (99.1:0.1 v/v) delivered at a flow‐rate of 1.0 mL/min. 8‐Chlorotheophylline was used as internal standard. Calibration curves were found to be linear for the two drugs over the concentration ranges of 5.0–40 and 1.0–20 μg/mL for zofenopril and hydrochlorothiazide, respectively. Linearity, precision, accuracy, specificity and robustness were determined in order to validate the proposed method, which was further applied to the analysis of commercial tablets. The proposed method is simple and rapid, and gives accurate and precise results.  相似文献   

2.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

3.
The quantification of intracranial gefitinib (GEF) exposure is limited owing to the sensitivity of analytical equipment. Although mass spectrometry (MS) is the preferred method because of its high sensitivity, the equipment is not available in many laboratories, especially in developing Asian countries. In this paper, we developed a highly sensitive high performance liquid chromatography‐diode array detector (HPLC‐DAD) method for the assay of GEF in human cerebrospinal fluid (CSF) and plasma. GEF was extracted from CSF and plasma by solid‐phase extraction and liquid–liquid extraction, respectively. The chromatographic separation was performed on a C18 column with gradient elution of 0.1% triethylamine solution and acetonitrile, then finally detected at 344 nm. This method was validated and proved to be highly sensitive with a lower limit of quantitation value of 0.11 ng/mL in CSF and 11 ng/mL in plasma. The blood–brain barrier penetration ratio of GEF ranged from 1.48 to 2.41%. This method provides a reliable MS‐independent solution for the quantitation of GEF in patients’ CSF and plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A simple hollow fiber liquid‐phase microextraction method for the determination of synthetic pyrethroid metabolites, 3‐phenoxybenzoic acid and 4‐hydroxy‐3‐phenoxybenzoic acid, in human and rat urine was developed and validated. A polypropylene hollow fiber tightly fitted onto a Nylon rod and impregnated with organic solvent served as a disposable extraction device. Desorption of analytes was carried out in NaOH solution, analyzed further by gradient HPLC and diode array detection method. Important factors were identified using Taguchi OA16 (45) orthogonal array design and further optimized using univariate approach. The optimum method performance was observed when 1 mL of urine hydrolyzed with 0.2 mL of concentrated HCl was further supplemented with 100 mg of NaCl and extracted for 120 min into dihexyl ether immobilized in the pores of the hollow fiber. Metabolites were desorbed into 0.1 mL of 0.1 M NaOH for another 120 min. Limits of detection and quantitation of 15 and 50 ng/mL were obtained for both analytes. Relative standard deviations of 1.6–12.6% over the linear range (50–10,000 ng/mL, r > 0.9906) were observed. Intra‐ and inter‐day accuracies of the method ranged from 98.3 to 109.5% and from 93.3 to 110.9%, respectively. The optimized method was applied to the analysis of real urine samples collected from rats exposed orally to cypermethrin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An ion‐pair reverse‐phase high performance liquid chromatographic method with UV–vis detection has been developed for the determination of total free iodine in rabbit plasma after vaginal administration of povidone–iodine (PVP‐I). Sample preparation was done by protein precipitation with acetonitrile in 96‐well format and aspirin was used as the internal standard. The 100 µL sodium thiosulfate solution (5 g L?1) was added to 100 µL plasma sample before protein precipitation, to convert the total free iodine in plasma to iodide (I?). Separation was performed on a C18 column (200 × 4.6 mm i.d., 5 µm). The mobile phase consisting of a mixture of water phase (containing 10 mmol L?1 18‐crown‐6 ether, 5 mmol L?1 octylamine and 5 mmol L?1 sodium dihydrogen phosphate, pH adjusted to 6.0 with phosphoric acid) and acetonitrile in the ratio 70:30 (v/v) was delivered isocraticly at a flow rate of 1.0 mL min?1. The method was sensitive with a lower limit of quantification of 0.005 µg mL?1, with good linearity (r2 > 0.9990) over the linear range of 0.005–2 µg mL?1. All the validation data, such as linearity, accuracy and precision, were within the required limits. The method was successfully applied to study the pharmacokinetic of PVP–I in rabbits after vaginal administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Evidence‐based herbal products with assured quality are assuming importance for complementary and alternative medicine. Traditional medicines by and large are not standardized and validated to meet the new requirements. In the present study, marker (embelin)‐based standardization of a major medicinal plant, Embelia ribes and its polyherbal formulations was attempted. Conditions for the quantitative extraction of the marker compound embelin from E. ribes fruits and herbal formulations were also optimized. Reversed‐phase high‐performance liquid chromatography, coupled with diode array detection (RP‐HPLC–DAD) for the quantification of embelin was developed and validated. Satisfactory results were obtained with respect to linearity (15–250 µg/mL), LOD (3.97 µg/mL), LOQ (13.2 µg/mL), recovery (99.4–103.8%) and precision (1.43–2.87%). The applicability of the method was demonstrated with selected phytopharmaceuticals. The present method was sensitive, accurate, simple and reproducible and therefore can be recommended for marker‐based standardization, and quality assurance of E. ribes herbal formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, rapid and sensitive analytical procedure for the measurement of celecoxib (CXB) levels in skin samples after in vitro penetration studies was developed and validated. In vitro permeability studies in porcine skin were performed for quantification of CXB at different layers of skin, the stratum corneum (SC) and epidermis plus dermis (EP + D) as well as in the acceptor solution (AS) to assess CXB permeation through skin. CXB was quantified by HPLC using a C18 column and UV detection at 251 nm. The mobile phase was methanol–water 72:28 (v/v) and the flow‐rate was 0.8 mL/min. The CXB retention time was 5 min. The assay was linear for CBX in the concentration range of 0.1–3.0 μg/mL in the AS (drug permeated through skin) and 5.0–50.0 μg/mL for drug retained in SC and [EP + D] in vitro. The linear correlation coefficients for the different calibration curves were equal or greater than 0.99. Intra‐ and inter‐assay variabilities were below 8.0%. Extraction of CXB from skin samples showed recoveries higher than 95.0% after 15 min of ultrasonic sound and centrifugation at 2500 rpm for 3 min. The method was considered appropriate for the assay of CXB in skin samples, after in vitro cutaneous penetration studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of the present study was to develop a simple, sensitive and accurate liquid chromatography–electrospray ionization tandem mass spectrometry (ESI‐MS/MS) method for the determination of lixivaptan (LIX) in mouse plasma using vildagliptin as the internal standard (IS). A precipitation procedure was used for the extraction of LIX and vildagliptin from mouse plasma. Chromatographic separation of LIX was achieved using a C18 analytical column (50 × 2.1 mm, 1.8 μm) at 25°C. The mobile phase comprised acetonitrile and ammonium formate (10 mm , pH 3.1; 40:60, v /v) pumped at a flow rate of 0.3 mL min−1. A tandem mass spectrometer with an electrospray ionization source was used to perform the assay. Quantification of LIX at m/z 290 → 137 and IS at 154 → 97 was attained through multiple reaction monitoring. The investigated method was authenticated following the bio‐analytical method of validation guidelines of the US Food and Drug Administration. The developed method showed a good linearity over the concentration range from 5 to 500 ng mL−1, and the calibration curve was linear (r = 0.9998). The mean recovery of LIX from mouse plasma was 99.2 ± 0.68%. All validation parameters for LIX were within the levels required for acceptance. The proposed method was effectively used for a pharmacokinetic study of LIX in mouse plasma.  相似文献   

9.
A sensitive and selective LC‐MS/MS method was developed and validated for the determination of aconitine in microdialysate and rat plasma. Extraction of plasma sample was conducted by use of 1% trichloracetic acid and acetonitrile solution with 10 ng/mL internal standard (propafenone) spiked. Microdialysates were analyzed without sample purification. After sample preparation, 2 µL were injected and separated with an isocratic mobile phase consisting of acetonitrile:0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode (MRM) using the electrospray ionization technique in positive mode. Overall, the assay exhibited good precision and accuracy. The diffusion properties of aconitine investigated in in vitro microdialysis experiments revealed unfavourable concentration dependence avertable by keeping a constant pH 5.77 using isotonic phosphate buffer solution as perfusate. The mean relative recoveries were 48.23% [coefficient of variation (CV 4.47%)] and 55.38% (CV 2.89%) for retrodialysis and recovery experiments, respectively. The in vivo recovery of aconitine was 34.48% (CV 3.05%) and was stable over the 6 h study period. Following characterization of aconitine both in vitro and in vivo microdialysis, the developed setting is suitable for application in pharmacokinetics and pharmacodynamics studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and specific method was developed and validated for the quantitation of one major metabolite of genipin in rats plasma. The major metabolite was isolated from rat bile via semi‐preparative HPLC technology and its chemical structure was identified as genipin‐1‐o‐glucuronic acid (GNP‐GLU), which was for the first time used as a standard compound for quantitative analysis in rat plasma after administration of genipin. The application of high‐performance liquid chromatography–tandem mass spectrometry in negative mode in multiple reaction monitoring mode was investigated. Chromatographic separation was achieved on an Eclipse XDB‐C18 column using a mobile phase consisting of water with 0.1% formic acid (A)–acetonitrile (B). The limit of detecation was 0.214 ng/mL and the lower limit of quantification was 0.706 ng/mL. The calibration curve was linear from 1.27 to 3810 ng/mL for plasma samples, with a correlation coefficient of 0.9924. The intra‐ and inter‐day precisions and accuracy were all within 15%. The recoveries of GNP‐GLU and puerarin were above 90.0 and 76.2%, respectively. The highly sensitive method was successfully applied to estimate pharmacokinetic parameters of GNP‐GLU following oral and intravenous administration of genipin to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and rapid RP‐HPLC‐DAD method was developed and validated for simultaneous determination of the dopamine antagonists haloperidol, its diazepane analog, and the dopamine agonist bromocriptine in rat plasma, to perform pharmacokinetic drug‐interaction studies. Samples were prepared for analysis by acetonitrile (22.0 μg/mL) plasma protein precipitation with droperidol as an internal standard, followed by a double‐step liquid‐liquid extraction with hexane : chloroform (70:30) prior to C‐18 separation. Isocratic elution was achieved using a 0.1% (v/v) trifluoroacetic acid in deionized water, methanol and acetonitrile (45/27.5/27.5, v/v/v). Triple‐wavelength diode‐array detection at the λmax of 245 nm for haloperidol, 254 nm for the diazepane analog and droperidol, and 240 nm for bromocriptine was carried out. The LLOQ of DAL, HAL, and BCT were 45.0, 56.1, and 150 ng/mL, respectively. In rats, the estimated pharmacokinetic parameters (i.e., t1/2, CL, and Vss) of HAL when administered with DAL and BCT were t1/2 = 16.4 min, Vss = 0.541 L/kg for HAL, t1/2 = 28.0 min, Vss = 2.00 L/kg for DAL, and t1/2 = 24.0 min, Vss = 0.106 L/kg for BCT. The PK parameters for HAL differed significantly from those previously reported, which may be an indication of a drug‐drug interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This article proposes a simple and sensitive HPLC method with photo‐diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250×4.6 mm, 5 μm) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan‐3‐ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans‐resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n=5) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97–105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rosé and fortified wines.  相似文献   

13.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and rapid high‐performance liquid chromatographic method with ultraviolet detection was developed for the quantitative determination of retigabine, known also as ezogabine, in human plasma. The assay uses a simple solid‐phase extraction for sample preparation and direct injection of the extract into the chromatograph. Flupirtine is used as an internal standard. Chromatographic separation is achieved on a C18 Chromolith column (Chromolith Performance, 100 × 4.6 mm i.d.), using as mobile phase water/acetonitrile/methanol (72:18:10 v/v/v) mixed with 0.1% of 85% phosphoric acid. Isocratic elution is conducted at a flow rate of 1.5 mL min−1. The total duration of a chromatographic run is 7 min. Calibration curves are linear over the 25–2000 ng mL−1 concentration range, with a limit of quantitation of 25 ng mL−1. Other performance characteristics include high precision (intra‐ and inter‐day coefficients of variation ≤12.6%) and high accuracy (99.7%–108.7%). The method is suitable for the investigation of concentration–response relationships in patients receiving therapeutic doses of retigabine.  相似文献   

15.
A sensitive HPLC–MS/MS method was established for the quantification of ceftriaxone sodium (CFT) and lidocaine HCl (LDC) in human plasma utilizing cefixime (CFX) and tadalafil (TDA) as internal standards. The analytes were extracted from human plasma by protein precipitation using acetonitrile. Chromatographic separation was performed on Kinetex C18 (50.0 × 4.6 mm, 5 μm particle size) column with methanol–0.01 M ammonium acetate pH 6.4 (70: 30, v/v) as mobile phase. Multiple reaction monitoring involving the transitions 555.10 → 396.20, 235.20 → 86.00, 454.20 → 284.80 and 390.20 → 268.20 was utilized to quantify CFT, LDC, CFX and TDA, respectively, using a triple quadrupole mass spectrometer which was operated in positive ion mode. The method revealed linearity in the concentration range of 3.0–300.0 μg/mL for CFT and 3.0–300.0 ng/mL for LDC. The validation of the method was achieved in accordance to the US Food and Drug Administration guidelines. A pharmacokinetic study was performed on healthy Egyptian volunteers after intramuscular injection of sterile ceftriaxone sodium (1 g CFT dissolved in 3.5 mL of 1% LDC) after approval from the ethics committee. The pharmacokinetic parameters were: Cmax 141.15 ± 39.84 (μg/mL) and 55.02 ± 9.36 (ng/mL); tmax (h) 2.50 ± 0.50 and 1.5 ± 0.50; t½ (h) 7.30 ± 2.98 and 4.23 ± 1.96; and Kel (h−1) 0.10 ± 0.04 and 0.20 ± 0.13 for CFT and LDC, respectively.  相似文献   

16.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method to determine clonidine in human plasma was developed and fully validated. Sample preparation was involved an one‐step extraction with diethyl ether. Donepezil was employed as the internal standard (IS). Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1 × 50 mm, particle size 3μm) with a mobile phase of methanol–water (containing 0.1% formic acid; 60:40, v/v) at a flow rate of 200 μL/min. The peaks were detected by mass spectrometry using the electrospray ion source in selected reaction monitoring mode. The extraction recovery was 72.53–85.25%. The method was found to be linear in a concentration range of 0.02–6.00 ng/mL and the lower limit of quantification was 0.02 ng/mL. The within‐ and between‐batch precisions at three concentrations were 4.33–16.47 and 7.24–17.24% with accuracies of ?2.47–10.91 and 1.86–10.19%, respectively. This validated method was successfully used for a bioequivalence study of two clonidine transdermal patches on healthy volunteers. The results suggested that the test formulation of clonidine patch met the regulatory criterion for bioequivalence to the reference formulation, but a larger sample size should be needed for the estimation of bioequivalence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
For the rational utilization and the quantitative quality control of the Stephania yunnanensis Lo, an HPLC‐DAD method was developed for the quantitative and simultaneous determination of five alkaloids in rat plasma (stepharine, sinomenine, palmatine, isocorydine and tetrahydropalmatine), which were the main active chemical constituents of this plant and belong to four kinds of isoquinoline‐type alkaloids (protoberberine, morphine, aporphine and protaporphine alkaloids). The contents of five alkaloids ranged from 0.09 to 2.32% (w/w). The method validation was tested for the linearity (r2 > 0.9975), precision (intra‐day RSD < 4.8% and inter‐day RSD < 4.9%), extraction recovery (85.49 ± 2.29% to 99.21 ± 1.48%) and stability (98.5 ± 5.3% to 101.2 ± 3.4%). We developed an HPLC‐DAD method to simultaneously measure these alkaloids in rat plasma after oral administration of the extract of this plant to rats. The results supported the hypothesis that isoquinoline alkaloids were the compounds responsible for the main pharmacological activities for anti‐inflammatory and analgesic.  相似文献   

18.
A simple, sensitive and reproducible isocratic reversed‐phase (C18) high‐performance liquid chromatography (HPLC) method was developed to determine 7‐O‐succinyl macrolactin A (SMA) in rat plasma and urine samples using UV detector set at 230 nm. Lamotrigine was used as internal standards (IS) to ensure the precision and accuracy of the method. The retention times of SMA and IS for the plasma sample were 9.2 and 4.4 min, respectively, and those for the urine samples were 7.9 and 4.3 min, respectively. The intra‐ and inter‐day variations of the analytical responses, expressed in terms of relative standard deviation, were less than 14.9%. The accuracy, in terms of average analytical recovery, ranged from 90.4 to 119%. The lower limits of quantification of SMA in rat plasma and urine samples were 0.02 and 0.1 µg/mL, respectively. This method is applicable for the pharmacokinetic studies of SMA in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A simple HPLC‐UV method was developed and validated for the quantification of pterostilbene (3,5‐dimethoxy‐4'‐hydroxy‐trans‐stilbene), a pharmacologically active phytoalexin in rat plasma. The assay was carried out by measuring the UV absorbance at 320 nm. Pterostilbene and the internal standard, 3,5,4'‐trimethoxy‐trans‐stilbene eluted at 5.7 and 9.2 min, respectively. The calibration curve (20–2000 ng/mL) was linear (R2 > 0.997). The lower limits of detection and of quantification were 6.7 and 20 ng/mL, respectively. The intra‐ and inter‐day precisions in terms of RSD were all lower than 6%. The analytical recovery ranged from 95.5 ± 3.7 to 103.2 ± 0.7% while the absolute recovery ranged from 101.9 ± 1.1 to 104.9 ± 4.4%. This simple HPLC method was subsequently applied in a pharmacokinetic study carried out in Sprague–Dawley rats. The terminal elimination half‐life and clearance of pterostilbene were 96.6 ± 23.7 min and 37.0 ± 2.5 mL/min/kg, respectively, while its absolute oral bioavailability was 12.5 ± 4.7%. Pterostilbene appeared to have better pharmacokinetic characteristics than its natural occurring analog, resveratrol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
 For the estimation of the limits of detection, identification and determination, considerations from analytical practice were applied to the statistics of the calibration line and its prediction interval. The detection limit was the concentration calculated from the maximum height of the prediction interval at zero spiking concentration. The identification limit was twice the detection limit and was the lowest concentration that could safely be detected. The determination limit was the lowest concentration fulfilling three criteria: 1. None of the signals resulting from determination limit concentration should interfere with any signal from detection limit concentration, thus providing an unambiguous separation between the two limits. 2. Recovery should be between 70% and 120%. 3. Lowest and highest predictable signal at determination limit concentration should not deviate more than ± 30% from the average. Practical analytical guidance and the necessary mathematical formulae are presented. Received: 12 November 1997 · Accepted: 7 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号