首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LC‐ ESI‐ MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin‐d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid–liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin‐d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis‐RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025–753.217 ng/mL for acitretin and 0.394–289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra‐day and inter‐day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive, rapid and specific high‐performance liquid chromatography tandem mass spectrometry method (HPLC‐MS/MS) was developed to determine ecliptasaponin A in rat plasma and tissues after oral administration. Ginsenoside Rg1 was used as the internal standard (IS). The plasma and tissues samples were prepared by liquid‐liquid extraction with ethyl acetate and separated on an Eclipse Plus C18 column (2.1 mm × 150 mm, 5 µm) at a flow rate of 0.4 mL/min using acetonitrile and water (containing 0.05% acetic acid) as the mobile phase. The tandem mass detection was carried out with eletrospray ionization in negative mode. Quantification was performed by using multiple reaction monitoring (MRM), which monitored the fragmentation of m/z 633.4→587.2 for ecliptasaponin A and m/z 859.4→637.4 for the IS. The calibration curves obtained were linear in different matrices, and the lower limit of quantification (LLOQ) achieved was 0.5 ng/mL both for rat plasma and tissues. The intra‐ and inter‐day precisions were below 15%. This method was successfully applied to pharmacokinetic study of ecliptasaponin A in rat plasma and tissues after oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

5.
Leonurine (SCM‐198), an alkaloid from Herba Leonuri, has been suggested as a novel cardiovascular agent by pharmacology studies in preclinical stage. In present study, we report a simple, rapid and sensitive high‐performance liquid chromatography–tandem mass spectrometry method (HPLC‐MS/MS) for determination of leonurine in rat plasma. Leonurine and its internal standard (IS) n‐benzoyl‐l ‐arginine ethyl ester (BAEE) were extracted from plasma samples by one‐step protein precipitation with perchloric acid. Chromatographic separation was performed on an Agilent Zorbax SB‐C18 column (150 × 2.1 mm, 5 µm) using an isocratic elution with acetonitrile–ammonium acetate buffer (10 mm , pH 4.0; 25:75, v/v) as mobile phase at a flow rate of 0.2 mL/min. Analytes were detected by tandem mass spectrometry in positive electrospray ionization (ESI) mode using multiple reaction monitoring (MRM) with the transitions of m/z 312.3 → 181.1 for leonurine and m/z 307.2 → 104.6 for IS. The calibration curves were linear over the range of 4–256 ng/mL with a lower limit of quantitation (LLOQ) of 4 ng/mL. The intra‐ and inter‐day assay precision (as relative standard deviation) were <15%, except which at LLOQ were <20%, with accuracy in the range 98.73‐105.42%. The validated HPLC‐MS/MS method was successfully applied to the pharmacokinetic study in rats following oral administration of leonurine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A simple, rapid and sensitive analytical method using liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS) detection with positive ion electrospray ionization was developed for the determination of dienogest in human K2EDTA plasma using levonorgestrel d6 as an internal standard (IS). Dienogest and IS were extracted from human plasma using simple liquid–liquid extraction. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl column (4.6 × 75 mm, 3.5 µm) under isocratic conditions using acetonitrile–5 mm ammonium acetate (70:30, v/v) at a flow rate of 0.60 mL/min. The protonated precursor to product ion transitions monitored for dienogest and IS were at m/z 312.30 → 135.30 and 319.00 → 251.30, respectively. The method was validated with a linearity range of 1.003–200.896 ng/mL having a total analysis time for each chromatograph of 3.0 min. The method has shown tremendous reproducibility with intra‐ and inter‐day precision (coefficient of variation) <3.97 and 6.10%, respectively, and accuracy within ±4.0% of nominal values. The validated method was applied to a pharmacokinetic study in human plasma samples generated after administration of a single oral dose of 2.0 mg dienogest tablets to healthy female volunteers and was proved to be highly reliable for the analysis of clinical samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid and highly selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of polygalasaponin F (PF) in rat plasma was developed and validated. The chromatographic separation was achieved on a reverse‐phase Zorbax SB‐C18 column (150 × 4.6 mm, 5 µm), using 2 mm ammonium acetate (pH adjusted to 6.0 with acetic acid) and acetonitrile (25:75, v/v) as a mobile phase at 30 °C. MS/MS detection was performed using an electrospray ionization operating in positive ion multiple reaction monitoring mode by monitoring the ion transitions from m/z 1091.5 → 471.2 (PF) and m/z 700.4 → 235.4 (internal standard), respectively. The calibration curve showed a good linearity in the concentration range 0.0544–13.6 µg/mL, with a limit of quantification of 0.0544 µg/mL. The intra‐ and inter‐day precisions were <9.7% in rat plasma. The method was validated as per US Food and Drug Administration guidelines and successfully applied to pharmacokinetic study of PF in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Taraxasterol, a pentacyclic triterpene from Taraxacum officinale, is one of the main active constituents of the herb. This study developed and validated a highly selective and sensitive liquid chromatography/tandem mass spectrometry for the determination of taraxasterol in rat plasma over the range of 9.0–5000 ng/mL. Chromatographic separation was achieved on a C18 (4.6 × 50 mm, 5.0 µm) column with methanol–isopropanol–water–formic acid (80:10:10:0.1, v/v/v/v) as mobile phase with an isocratic elution. The flow rate was 0.7 mL/min. After adding cucurbitacin IIa as an internal standard (IS), liquid–liquid extraction was used for sample preparation using ethyl acetate. The atmospheric pressure chemical ionization source was applied and operated in positive ion mode. Selected reaction monitoring mode was used for the quantification of transition ions m/z 409.4 → 137.1 for taraxasterol and m/z 503.4 → 113.1 for IS. The mean recoveries of taraxasterol in rat plasma ranged from 85.3 to 87.2%. The matrix effects for taraxasterol were between 98.5 and 104.0%. Intra‐ and inter‐day precision were both <11.8%, and the accuracy of the method ranged from ?7.0 to 12.9%. The method was successfully applied to a pharmacokinetic study of taraxasterol after oral administration of 7.75, 15.5 and 31.0 mg/kg in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, selective and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining bencycloquidium bromide (BCQB) in beagle dog plasma. The plasma sample was deproteinized with methanol which contained l‐ethyl‐bencycloquidium bromide as internal standard, and supernantant was assayed by LC‐MS/MS. The chromatographic separation was performed on a Phenomenex C18 column (100 × 2.0 mm, i.d., 3.0 μm) with a gradient programme mobile phase consisting of methanol and ammonium acetate (5 mm) containing 0.15% acetic acid and at a flow rate of 0.3 mL/min. Electrospray ionization in positive ion mode and selective reaction monitoring was used for the quantification of BCQB with a monitored transitions m/z 330.2 → 142.1 for BCQB and m/z 344.2 → 126.2 for IS. Validation results indicated that the lower limit of quantification was 0.05 ng/mL and the assay exhibited a linear range of 0.05–10.0 ng/mL and gave a correlation coefficient of 0.9998. The intra‐ and inter‐run precisions of the assay were 1.7–4.6 and 3.2–15.6%, respectively, and the intra‐ and inter‐day accuracies were ?8.8 to 1.1 and ?5.0 to 4.6%, respectively. The developed method was applied for the pharmacokinetic study of BCQB in beagle dogs following a single intranasal dose. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively.  相似文献   

14.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, simple, sensitive and selective ultraperformance liquid chromatography–tandem spectrometry (UPLC‐MS/MS) method for the determination of nalbuphine and its prodrug sebacoly dinalbuphine ester (SDE) was developed and validated in human plasma. The sample pretreatment involves basification and iterative liquid–liquid extraction with ethyl‐ether–dichloromethane (7:3, v/v) solution, followed by LC separation and positive electrospray ionization (ESI) API‐3000 mass spectrometry detection. The chromatography was on a Waters Acquity UPLC BEH HILIC column (2.1 × 100 mm, 1.7 µm). The mobile phase was composed of acetonitrile and water (83:17, v/v) that contained 0.2% formic acid and 4 mm ammonium formate at a flow rate of 0.25 mL/min. Ethylmorphine and naloxine were selected as the SDE and nalbuphine internal standard (IS), respectively. The calibration curve for both was linear over the range from 0.05 to 20 ng/mL, with correlation coefficients ≥0.995. The lower limit of quantification was set at 0.05 ng/mL. The intra‐ and inter‐day precision values for nalbuphine and SDE were acceptable as per FDA guidelines. The method was applied successfully to determine nalbuphine concentration in human plasma samples obtained from four Taiwanese volunteers receiving intramuscularly administration of sebacoyl dinalbuphine ester. The method is sensitive, selective and directly applicable to human pharmacokinetic studies involving nalbuphine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and specific liquid chromatographic–electrospray ionization mass spectrometric method was developed for quantification of salvianolic acid B in rat plasma with resveratrol as the internal standard. The analytes were separated on a reversed‐phase column with acetonitrile (40%) and water (60%) containing 0.75% formic acid as mobile phase at a flow rate of 1 mL/min. Liquid–liquid extraction was adopted for the sample preparation, and the analytes were determined using electrospray negative ionization mass spectrometry in the selective monitoring mode. The method was validated over the concentration range 0.1–40 µg/mL using 0.1 mL of plasma with coefficients of correlation >0.999. The intra‐ and inter‐day precisions of analysis were <10%, and accuracy ranged from 94 to 101%. This method was successfully applied to a pharmacokinetics of salvianolic acid B in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号