首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive, rapid assay method for estimating ivabradine in human plasma has been developed and validated using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The procedure involved extraction of ivabradine and the internal standard (IS) from human plasma by solid‐phase extraction. Chromatographic separation was achieved using an isocratic mobile phase (0.1% formic acid–methanol, 60:40, v/v) at a flow rate of 1.0 mL/min on an Aglient Eclipse XDB C8 column (150 × 4.6 mm, 5 µm; maintained at 35°C) with a total run time of 4.5 min. Detection was achieved using an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 3200 triple‐quadrupole mass spectrometer. The MS/MS ion transitions monitored were 469–177 for ivabradine and 453–177 for IS. Method validation was performed according to Food and Drug Administration guidelines, and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 0.1–200 ng/mL. The lower limit of quantitation achieved was 0.1 ng/mL. Intra‐ and inter‐day precisions were in the range of 1.23–14.17% and 5.26‐8.96%, respectively. Finally, the method was successfully used in a pharmacokinetic study that measured ivabradine levels in healthy volunteers after a single 5 mg oral dose of ivabradine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This study is the first to detail the development and validation of a rapid, sensitive and specific LC‐ESI‐MS/MS method for the determination of eriodictyol‐8‐C‐β‐d ‐glucopyranoside (EG) in rat plasma. A simple protein precipitation method was used for plasma sample preparation. Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm) using a step gradient program with the mobile phase of 0.1% formic acid aqueous solution and acetonitrile with 0.1% formic acid. EG and the internal standard (IS) were detected using an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. This method demonstrated good linearity and did not show any endogenous interference with the active compound and IS peaks. The lower limit of quantification of EG was 0.20 ng/mL in 50 μL rat plasma. The average recoveries of EG and IS from rat plasma were both above 80%. The inter‐day precisions (relative standard deviation) of EG determined over 5 days were all within 15%. The present method was successfully applied to a quantification and bioavailability study of EG in rats after intravenous and oral administration. The oral absolute bioavailability of EG in rats was estimated to be 7.71 ± 1.52%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

10.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

11.
A simple, rapid and sensitive LC‐MS/MS method was developed and validated for the determination of free quercetin in rat plasma, using fisetin as internal standard. The detection was performed by negative ion electrospray ionization under selected reaction monitoring. Chromatographic separation (isocratic elution) was carried out using acetonitrile–10 m m ammonium formate (80:20, v/v) with 0.1% v/v formic acid. The lower limit of quantification (4.928 ng/mL) provided high sensitivity for the detection of quercetin in rat plasma. The linearity range was from 5 to 2000 ng/mL. Intra‐ and inter‐day variability (RSD) of quercetin extraction from rat plasma was <4.19 and 1.37% with accuracies of 98.77 and 99.67%. The method developed was successfully applied for estimating free quercetin in rat plasma, after oral administration of quercetin‐loaded biodegradable nanoparticles (QLN) and quercetin suspension. QLN (Cmax, 1277.34 ± 216.67 ng/mL; AUC, 17,458.25 ± 3152.95 ng hr/mL) showed a 5.38‐fold increase in relative bioavailability as compared with quercetin suspension (Cmax, 369.2 ± 108.07 ng/mL; AUC, 3276.92 ± 396.67 ng hr/mL). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A highly sensitive, rapid assay method has been developed and validated for the simultaneous estimation of tolmetin (TMT) and MED5 in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. A simple solid‐phase extraction process was used to extract TMT and MED5 along with mycophenolic acid (internal standard, IS) from human plasma. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.50 mL/min on an X‐Terra RP18 column with a total run time of 2.5 min. The MS/MS ion transitions monitored were 258.1 → 119.0 for TMT, 315.1 → 119.0 for MED5 and 321.2 → 207.0 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 20 ng/mL and the linearity was observed from 20 to 2000 ng/mL, for both the anlaytes. The intra‐day and inter‐day precisions were in the range 3.27–4.50 and 5.32–8.18%, respectively for TMT and 4.27–5.68 and 5.32–8.85%, respectively for MED5. This novel method has been applied to a clinical pharmacokinetic study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Asperosaponin VI (also named akebia saponin D) is a typical bioactive triterpenoid saponin isolated from the rhizome of Dipsacus asper Wall (Dipsacaceae). In this work, a sensitive high‐performance liquid chromatography–electrospray ionization–mass spectrometry (HPLC‐ESI‐MS) assay has been established for determination of asperosaponin VI in rat plasma. With losartan as the internal standard (IS), plasma samples were prepared by protein precipitation with methanol. Chromatographic separation was performed on a C18 column with a mobile phase of 10 mm ammonium acetate buffer containing 0.05% formic acid–methanol (32 : 68, v/v). The analysis was performed on an ESI in the selected ion monitoring mode using target ions at m/z 951.4 for asperosaponin VI and m/z 423.2 for the IS. The calibration curve was linear over the range 3–1000 ng/mL and the lower limit of quantification was 3.0 ng/mL. The intra‐ and inter‐assay variability values were less than 9.5 and 7.8%, respectively. The accuracies determined at the concentrations of 3.0, 100.0, 300.0 and 1000 ng/mL for asperosaponin VI were within ±15.0%. The validated method was successfully applied to a pharmacokinetic study in rats after oral administration of asperosaponin VI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

18.
A highly sensitive, rapid assay method has been developed and validated for the analysis of hyperoside in beagle dog plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of hyperoside and ginsenoside Re (IS) from beagle dog plasma. Chromatographic separation was carried out on an Agilent Zorbax XDB‐C18 (100 × 2.1 mm, 1.8 µm) column by isocratic elution with acetonitrile and water (50:50, v/v) at a flow rate of 0.25 mL/min with a total run time of 2.0 min. The MS/MS ion transitions monitored were 464.4 → 463.4 for hyperoside and 947.12 → 969.60 for IS. Linear responses were obtained for hyperoside ranging from 10 to 5000 ng/mL. The intra‐and inter‐day precisions (RSDs) were <5.38 and 3.39% and the extraction recovery ranged from 94.39 to 100.78% with an RSD <3.82%. Stability studies showed that hyperoside was stable in preparation and analytical process. The results indicated that the validated method was successfully used to determine the concentration–time profiles of hyperoside. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive, selective and high‐throughput UPLC‐MS/MS method was developed and validated for the determination of a novel c‐Met tyrosine kinase inhibitor, QBH‐196, in rat plasma. QBH‐196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N‐hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH‐196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0–4000 ng/mL (r2 > 0.99) for QBH‐196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra‐ and inter‐day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH‐196 in rats for the first time. The mean oral absolute bioavailability of QBH‐196 was found to be about 40.8% and the elimination half‐life was 40.0 ± 13.1 h. This result suggested that QBH‐196 exhibits good oral absorption in vivo, which is very important for the further development of QBH‐196 as a new oral anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号