首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu M  Zhao S  Wang Z  Wang H  Shi X  Lü Z  Xu H  Wang H  Du Y  Zhang L 《Journal of separation science》2011,34(22):3200-3207
Epimedin C is one of the major bioactive constituents of Herba Epimedii. The aim of this study is to characterize and elucidate the structure of metabolites in the rat after administration of epimedin C. Metabolite identification was performed using a predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (pMRM-IDA-EPI) scan in positive ion mode on a hybrid triple quadrupole-linear ion trap mass spectrometer. A total of 18 metabolites were characterized by the changes in their protonated molecular masses, their MS/MS spectrum and their retention times compared with those of the parent drug. The results reveal possible metabolite profiles of epimedin C in rats; the metabolic pathways including hydrolysis, hydroxylation, dehydrogenation, demethylation and conjugation with glucuronic acid and different sugars were observed. This study provides a practical approach for rapidly identifying complicated metabolites, a methodology that could be widely applied for the structural characterization of metabolites of other compounds.  相似文献   

2.
Epimedin C is one of the major bioactive constituents of Herba Epimedii. In this study, the metabolite profiles of epimedin C in rat plasma and bile were qualitatively investigated, and the possible metabolic pathways of epimedin C were subsequently proposed. After oral administration of epimedin C at a single dose of 80 mg/kg, rat biological samples were collected and pretreated by protein precipitation. Then these pretreated samples were injected into an Acquity UPLC BEH C18 column and detected by ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. In all, 12 metabolites were identified in the biosamples. Of these, eight, two from plasma and six from bile, are, to our knowledge, reported here for the first time. The results indicated that epimedin C was metabolized via desugarization, dehydrogenation, hydrogenation, dehydroxylation, hydroxylation, demethylation and glucuronidation pathways in vivo. Thus, this study revealed the possible metabolite profiles of epimedin C in rat plasma and bile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Cui  Li  Xu  Fengjuan  Jiang  Jun  Sun  E.  Zhang  Zhenhai  Cheng  Xudong  Wang  Jing  Jia  Xiaobin 《Chromatographia》2014,77(17):1223-1234

Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.

  相似文献   

5.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

6.
Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.  相似文献   

7.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and sensitive high‐performance liquid chromatography coupled with hybrid triple quadrupole–linear ion trap mass spectrometry (Q‐trap‐MS) method was developed and validated for the determination of veratramine, the major bioactive and neurotoxic component in Veratrum nigrum L. Veratramine and the internal standard (IS) were separated with a Waters Symmetry C18 column and eluted with a gradient mobile phase system containing acetonitrile and 0.1% aqueous formic acid. The analysis was performed by using positive electrospray ionization mode with multiple reaction monitoring (MRM). Transition ions of m/z 410.2 → 295.2 for veratramine and m/z 426.1 → 113.8 for the IS were monitored. The method was validated with a good linearity in the range of 1–1000 ng/mL and lower limit of quantification of 1 ng/mL. The precision (CV) of intra‐ and inter‐day ranged from 3.92 to 7.29%, while the accuracy (bias) intra‐ and inter‐day were between ?4.78 and 1.65%. The recovery, stability and matrix effect were within the acceptable ranges. Five metabolites of veratramine, including four hydroxylated and one sulfated metabolites, were tentatively identified using predictive MRM–information dependent acquisition–enhanced product ion mode (predictive MRM‐IDA‐EPI). The developed method was successfully applied to the pharmacokinetic and metabolic study of veratramine in mice after oral administration of veratramine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of genipin in rat plasma after hydrolysis with sulfatase. Genipin could not be detected directly as it could be transformed into other forms such as conjugated‐genipin immediately after administration. The conjugated genipin could be hydrolyzed by sulfatase to genipin. The conditions of hydrolysis were investigated. Genipin and the internal standard, peoniflorin (IS), were separated on a reversed‐phase column by gradient elution and detected using an electrospray ion source on a 4000 QTrap triple‐quadrupole mass spectrometer. The quantification was performed using multiple reaction monitoring with selected precursor‐product ion pairs of the transitions m/z 225.0 → 122.7 and m/z 479.1 → 449.1 for genipin and peoniflorin. The assay was linear over the concentration range of 1.368–1368 ng/mL, with correlation coefficients of 0.9989. Intra‐ and inter‐day precisions and accuracy were all within 15%. The lower limit of quantification was 1.368 ng/mL. The recoveries of genipin and peoniflorin were more than 53.3 and 51.2%. The highly sensitive method was successfully applied to estimated pharmacokinetic parameters of genipin following oral and intravenous administration to rats. The absolute bioavailability of genipin was 80.2% in rat, which is the first report. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Several chemical and biological studies have revealed R,S‐goitrin as the main bioactive constituent of Isatis indigotica Fort., responsible for antiviral antiendotoxin activity; however, few pharmacokinetic studies have been conducted. To comprehend the kinetics of R,S‐goitrin and promote its curative application, a rapid and sensitive UHPLC–MS/MS method was developed. The selected reaction monitoring transitions were m/z 130.0 → 70.0 for R,S‐goitrin and m/z 181.1 → 124.0 for the internal standard in a positive‐ion mode. The established UHPLC–MS/MS method achieved good linearity for R,S‐goitrin at 10–2000 ng/mL. The intra‐ and interday accuracy levels were within ±9.7%, whereas the intraday and interday precision levels were <11.3%. The extraction recovery, stability and matrix effect were within acceptable limits. The validated method was successfully applied for the pharmacokinetic analysis of R,S‐goitrin in rats after oral administration. Moreover, a total of six metabolites were structurally identified through UHPLC–Q/TOF–MS. The proposed metabolic pathways of R,S‐goitrin in rats involve demethylation, acetylation, glutathionylation and oxygenation.  相似文献   

12.
Leonurine (SCM‐198), an alkaloid from Herba Leonuri, has been suggested as a novel cardiovascular agent by pharmacology studies in preclinical stage. In present study, we report a simple, rapid and sensitive high‐performance liquid chromatography–tandem mass spectrometry method (HPLC‐MS/MS) for determination of leonurine in rat plasma. Leonurine and its internal standard (IS) n‐benzoyl‐l ‐arginine ethyl ester (BAEE) were extracted from plasma samples by one‐step protein precipitation with perchloric acid. Chromatographic separation was performed on an Agilent Zorbax SB‐C18 column (150 × 2.1 mm, 5 µm) using an isocratic elution with acetonitrile–ammonium acetate buffer (10 mm , pH 4.0; 25:75, v/v) as mobile phase at a flow rate of 0.2 mL/min. Analytes were detected by tandem mass spectrometry in positive electrospray ionization (ESI) mode using multiple reaction monitoring (MRM) with the transitions of m/z 312.3 → 181.1 for leonurine and m/z 307.2 → 104.6 for IS. The calibration curves were linear over the range of 4–256 ng/mL with a lower limit of quantitation (LLOQ) of 4 ng/mL. The intra‐ and inter‐day assay precision (as relative standard deviation) were <15%, except which at LLOQ were <20%, with accuracy in the range 98.73‐105.42%. The validated HPLC‐MS/MS method was successfully applied to the pharmacokinetic study in rats following oral administration of leonurine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed and validated using spinasterol as the internal standard (IS) for the simultaneous determination of shionone and epi‐friedelinol in rat plasma. Plasma samples were pretreated using liquid–liquid extraction with ethyl ether. Chromatographic separation was achieved on a C18 column (100 × 2.1 mm, 5 μm) with an isocratic elution consisting of acetonitrile–0.1% formic acid water (75:25, v/v) at a flow rate of 0.30 mL/min. Detection was performed under the selected reaction monitoring scan using an electrospray ionization in the positive ion mode. The mass transitions were as follows: m/z 427.4 → 95.1 for shionone, m/z 411.4 → 205.2 for epi‐friedelinol and m/z 395.3 → 105.2 for IS. All calibration curves exhibited good linearity (r > 0.995) over the concentration range for both components. The intra‐ and inter‐day precisions at three QC and lower limit of quantitation levels were both <10.21% in terms of relative standard deviation, and the accuracy ranged from ?7.13 to 8.02% in terms of relative error. The extraction recoveries of the compounds ranged from 82.07 to 89.81%. The developed method was successfully applied to the pharmacokinetic study of shionone and epi‐friedelinol after oral administration of Aster tataricus extract to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, simple and sensitive UHPLC‐MS/MS method was developed and validated for the simultaneous determination of brucine, strychnine and brucine N‐oxide in rat plasma using huperzine A as an internal standard (IS) after protein precipitation with methanol. The analytes were separated on a Purospher® STAR RP18 UHPLC column (2 µm, 2.1 × 100 mm) by gradient elution using a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. Brucine, strychnine, brucine N‐oxide and IS were detected in positive ion multiple reaction monitoring mode by means of an electrospray ionization interface (m/z 395.2 → 324.1, m/z 335.2 → 184.1, m/z 411.2 → 394.2, m/z 243.1 → 226.1). The calibration curve was linear over the range of 1–500 ng/mL for brucine and strychnine and 0.2?50 ng/mL for brucine N‐oxide. The intra‐ and inter‐day precisions of these analytes were all within 15% and the accuracy ranged from 85 to 115%. The stability experiment indicated that the plasma samples at three concentration levels were stable under different conditions. The developed method was successfully applied for the first time to pharmacokinetic studies of brucine, strychnine and brucine N‐oxide following a single oral and intravenous administration of modified total alkaloid fraction in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Sparstolonin B (SsnB), a spontaneous isocoumarin compound isolated from the tuber of Scirpus yagara Ohwi. (Cyperaceae), possesses potent anti‐inflammatory and antitumor activity. In the present study, a rapid and simple UHPLC/MS/MS method for determination of SsnB in rat plasma was developed and validated. Plasma samples were pretreated by liquid–liquid extraction with ethyl acetate containing rhein as an internal standard and separated on a C18 column at 35 °C, with a gradient mobile phase consisting of acetonitrile and water containing 0.2% (v/v) formic acid within 2.1 min. MS/MS detection was accomplished in multiple reaction monitoring mode with negative electrospray ionization. The precursor–product ion transitions were m/z 266.9 [M–H]?m/z 211.0 for SsnB and m/z 283.2 [M–H]?m/z 239.0 for IS. The intra‐ and inter‐day precision (RSD) was <8.98% and the accuracy (RE) ranged from ?7.40 to 4.50%. The extraction recoveries ranged from 96.28 to 97.30%. The pharmacokinetic parameters were calculated using Win Nonlin53 software. The absolute bioavailability of SsnB was estimated to be 6.98%. The proposed method was successfully applied to a pharmacokinetic study of SsnB in rats after intravenous administration with a dose of 0.5 mg/kg and oral administration at a dose of 5 mg/kg. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A bioanalytical method was developed and validated to estimate donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil simultaneously in human plasma using galantamine as an internal standard (IS). The chromatographic separation was achieved on a reverse‐phase XTerra RP (150 × 4.6 mm, 5 µm) column without affecting recovery (mean recovery > 60% with CV < 10%) for all analytes. ESI‐MS/MS multiple reaction monitoring in positive polarity was used to detect mass pairs for donepezil (m/z 380.3 → 91.3), 6‐desmethyl donepezil (m/z 366.4 → 91.3), 5‐desmethyl donepezil (m/z 366.4 → 91.3) and galantamine m/z (288.1 → 213.0). The linearity was established over a dynamic range of 0.339–51.870, 0.100–15.380 and 0.103–15.763 ng/mL for donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil, respectively. The current method shows that minimal conversion of labile metabolites to parent donepezil in plasma as stability was successfully achieved for 211 days at ?15 °C storage temperature. The method was successfully applied to a clinical study after administration of 10 mg donepezil tablets to healthy male Indian volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Nitazoxanide (NTZ) is a broad‐spectrum antimicrobial agent. Tizoxanide (T) and tizoxanide glucuronide (TG) are the major circulating metabolites after oral administration of NTZ. A rapid and specific LC–MS/MS method for the simultaneous quantification of T and TG in mouse plasma was developed and validated. A simple acetonitrile‐induced protein precipitation method was employed to extract two analytes and the internal standard glipizide from 50 μL of mouse plasma. The purified samples were resolved using a C18 column with a mobile phase consisting of acetonitrile and 5 mm ammonium formate buffer (containing 0.05% formic acid) following a gradient elution. An API 3000 triple quadrupole mass spectrometer was operated under multiple reaction‐monitoring mode with electrospray ionization. The precursor‐to‐product ion transitions m/z 264 → m/z 217 for T and m/z 440 → m/z 264 for TG were used for quantification. The developed method was linear in the concentration ranges of 1.0–500.0 ng/mL for T and 5.0–1000.0 ng/mL for TG. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentrations exhibited an RSD of <13.2% and the accuracy values ranged from ?9.6 to 9.3%. We used this validated method to study the pharmacokinetics of T and TG in mice following oral administration of NTZ. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号