首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

2.
A sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for simultaneous determination of R‐bambuterol and its active metabolite R‐terbutaline in human plasma and urine was established. The inhibition for the biotransformation of R‐bambuterol in plasma was fully investigated. Plasma samples were prepared on ice and neostigmine metilsulfate added as a cholinesterase inhibitor immediately after sample collection. All samples were extracted with ethyl acetate and separated on a C18 column under gradient elution with a mobile phase consisting of methanol and water containing 5 mm ammonium acetate at a flow rate of 0.6 mL/min. The analytes were detected by an API 4000 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method was highly sensitive with the lower limit of quantification (LLOQ) of 10.00 pg/mL for each analyte in plasma. In urine samples, the LLOQs were 20.00 and 500.0 pg/mL for R‐bambuterol and R‐terbutaline, respectively. The intra‐ and inter‐day precisions were <12.7 and <8.6% for plasma and urine, respectively. The analytical runtime within 6.0 min per sample made this method suitable for high‐throughput determination. The validated method has been successfully applied to the human pharmacokinetic study of R‐bambuterol involving 10 healthy volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A selective and sensitive liquid chromatography tandem mass spectrometry method was developed for the first time for the identification and quantification of curdione in rabbit plasma after vaginal drug administration and intravenous administration of zedoary turmeric oil (ZTO) solution (10 mg/kg). The analysis was performed on a triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive ionization mode. After mixing with internal standard diazepam, plasma samples were extracted with ethyl ether–acetic ether (1:1, v/v). Chromatographic separation was carried out on a C18 column with gradient elution using a mixture of water and acetonitrile (both containing 0.1% formic acid) as mobile phases. Linearity ranged over 1.06–106 and 10.6–530 ng/mL (r ≥ 0.995) with the lower limit of quantfication 1.06 ng/mL. The intra‐ and inter‐day precision relative standard deviation values were <12% and the accuracy relative error was from ?10.6 to ?6.1% at all quality control sample levels. The method was applied to a study of the pharmacokinetics of curdione after vaginal drug administration and intravenous administration of ZTO. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Damage of blood–brain barrier is a common result of traumatic brain injury. This damage can open the blood–brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood–brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple‐quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10–8000 ng/mL for the biofluids. The intra‐ and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid/AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood–brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury.  相似文献   

5.
A sensitive and rapid LC‐MS/MS method has been developed and validated for quantifying swertianolin in rat plasma using rutin as an internal standard (IS). Following liquid–liquid extraction with ethyl acetate, chromatographic separation for swertianolin was achieved on a C18 column with a gradient elution using 0.1% formic acid as mobile phase A and acetonitrile as mobile phase B at a flow rate of 0.3 mL/min. The detection was performed on a tandem mass spectrometer using multiple reaction monitoring via an electrospray ionization source and operating in the negative ionization mode. The optimized mass transition ion pairs (m/z) for quantitation were 435.1/272.0 for swertianolin and 609.2/300.1 for IS. The lower limit of quantitation was 0.5 ng/mL within a linear range of 0.5–500 ng/mL. Intra‐day and inter‐day precision was less than 6.8%. The accuracy was in the range of ?13.9 to 12.0%. The mean recovery of swertianolin was >66.7%. The proposed method was successfully applied in evaluating the pharmacokinetics of swertianolin after an oral dose of 50 mg/kg Swertia mussotii extract in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The World Anti‐Doping Agency (WADA) has recently added desmopressin, a synthetic analogue of the endogenous peptide hormone arginine vasopressin, to the Prohibited List, owing to the potential masking effects of this drug on hematic parameters useful to detect blood doping. A qualitative method for detection of desmopressin in human urine by high‐performance liquid chromatography–electrospray tandem mass spectrometry (LC‐ESI‐MS/MS) has been developed and validated. Desmopressin purification from urine was achieved by means of delipidation with a 60:40 di‐isopropyl ether/n‐butanol and solid‐phase extraction with WCX cartridges. The lower limit of detection was 25 pg/mL. Extraction recovery was determined as 59.3% (SD 29.4), and signal reduction owing to ion suppression was estimated to be 42.7% (SD 12.9). The applicability of the method was proven by the analysis of real urine samples obtained after intravenous, oral and intranasal administration of desmopressin, achieving unambiguous detection of the peptide in all the cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, sensitive and selective high‐performance liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method was developed for simultaneous determination and pharmacokinetic study of caffeic acid (CA) and its active metabolites. The separation with isocratic elution used a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection of target compounds was done in selected reaction monitoring (SRM) mode. The SRM detection was operated in the negative electrospray ionization mode using the transitions m/z 179 ([M ? H]?) → 135 for CA, m/z 193 ([M ? H]?) → 134.8 for ferulic acid and isoferulic acid and m/z 153 ([M ? H]?) → 108 for protocatechuic acid. The method was linear for all analytes over the investigated range with all correlation coefficients 0.9931. The lower limits of quantification were 5.0 ng/mL for analytes. The intra‐ and inter‐day precisions (relative standard deviation) were <5.86 and <6.52%, and accuracy (relative error) was between ?5.95 and 0.35% (n = 6). The developed method was applied to study the pharmacokinetics of CA and its major active metabolites in rat plasma after oral and intravenous administration of CA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of the present study was to develop a simple, sensitive and accurate liquid chromatography–electrospray ionization tandem mass spectrometry (ESI‐MS/MS) method for the determination of lixivaptan (LIX) in mouse plasma using vildagliptin as the internal standard (IS). A precipitation procedure was used for the extraction of LIX and vildagliptin from mouse plasma. Chromatographic separation of LIX was achieved using a C18 analytical column (50 × 2.1 mm, 1.8 μm) at 25°C. The mobile phase comprised acetonitrile and ammonium formate (10 mm , pH 3.1; 40:60, v /v) pumped at a flow rate of 0.3 mL min−1. A tandem mass spectrometer with an electrospray ionization source was used to perform the assay. Quantification of LIX at m/z 290 → 137 and IS at 154 → 97 was attained through multiple reaction monitoring. The investigated method was authenticated following the bio‐analytical method of validation guidelines of the US Food and Drug Administration. The developed method showed a good linearity over the concentration range from 5 to 500 ng mL−1, and the calibration curve was linear (r = 0.9998). The mean recovery of LIX from mouse plasma was 99.2 ± 0.68%. All validation parameters for LIX were within the levels required for acceptance. The proposed method was effectively used for a pharmacokinetic study of LIX in mouse plasma.  相似文献   

9.
A simple, specific and reproducible liquid chromatography–electrospray ionization mass spectrometry was developed and validated for the determination of jolkinolide B, a potential antitumor active component isolated from Euphorbia fischeriana, in rat plasma. Chromatographic separation was achieved on a Venusil MP‐C18 column using an isocratic elution. Jolkinolide B and osthole (internal standard) were monitored by positive electrospray ionization in the selected reaction monitoring mode. Good linearity (r2 > 0.996) was achieved by a weighted (1/x2) linear least‐squares regression over a concentration range of 6.50–2600 ng/mL. The accuracy and precision of the assay were satisfactory and the method proved to be applicable to pharmacokinetics following a single intravenous bolus injection of jolkinolide B to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method for the determination of periplocymarin in biological samples was developed and successfully applied to the pharmacokinetic and tissue distribution study of periplocymarin after oral administration of periplocin. Biological samples were processed with ethyl acetate by liquid–liquid extraction, and diazepam was used as the internal standard. Periplocymarin was analyzed on a C18 column with isocratic eluted mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min (73:27, v/v). Detection was performed on a triple‐quadrupole tandem mass spectrometer using positive‐ion mode electrospray ionization in the selected reaction monitoring mode. The MS/MS ion transitions monitored were m/z 535.3→355.1 and 285.1→193.0 for periplocymarin and diazepam, respectively. Good linearity was observed over the concentration ranges. The lower limit of quantification was 0.5 ng/mL in plasma and tested tissues. The intra‐and inter‐day precisions (relative standard deviation) were <10.2 and 10.5%, respectively, and accuracies (relative error) were between ?6.8 and 8.9%. Recoveries in plasma and tissue were >90%. The validated method was successfully applied to the pharmacokinetic and tissue distribution studies of periplocymarin in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The benefit–risk ratio of combined blocking by the direct renin inhibitor aliskiren and an angiotensin‐converting enzyme inhibitor (e.g. enalapril) on the renin–angiotensin–aldosterone system is discussed. No method was available for simultaneous determination of both drugs in urine. A novel sensitive method for simultaneous quantification in undiluted human urine was developed which enables systematic pharmacokinetic investigations, especially in poorly investigated populations like children. Matrix effects were clearly reduced by applying solid‐phase extraction followed by a chromatographic separation on XselectTM C18 CSH columns. Mobile phase consisted of methanol and water, both acidified with formic acid. Under gradient conditions and a flow rate of 0.4 mL/min the column effluent was monitored by tandem mass spectrometry with electrospray ionization. Calibration curves were constructed in the range of 9.4–9600 ng/mL regarding aliskiren, 11.6–12000 ng/mL for enalapril and 8.8–9000 ng/mL for enalaprilat. All curves were analyzed utilizing 1/x2‐weighted quadratic squared regression. Intra‐run and inter‐run precision were 3.2–5.8% and 6.1–10.3% for aliskiren, 2.4–6.1% and 3.9–7.9% for enalapril as well as 3.1–9.4% and 4.7–12.7% regarding enalaprilat. Selectivity, accuracy and stability results comply with current international bioanalysis guidelines. The fully validated method was successfully applied to a pharmacokinetic investigation in healthy volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and validated method for analysis of levosulpiride in human plasma using liquid chromatography coupled to tandem mass spectrometry was developed. Levosulpiride and tiapride (IS, internal standard) were extracted from alkalized plasma samples with ethylacetate and separation by RP‐HPLC. Detection was performed by positive ion electrospray ionization in multiple‐reaction monitoring mode, monitoring the transitions m/z 342.1 → m/z 112.2 and m/z 329.1 → m/z 213.2, for quantification of levosulpiride and IS, respectively. The standard calibration curves showed good linearity within the range of 2–200 ng/mL (r2 ≥ 0.9990). The lower limit of quantitation was 2 ng/mL. The retention times of levosulpiride (0.63 min) and IS (0.66 min) presented a significant time saving benefit of the proposed method. No significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence study of a 25 mg of levosulpiride tablet in 24 healthy Korean volunteers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Xiao‐Ai‐Ping injection (XAPI) is a traditional Chinese medicine that has been widely used to treat cancer. Modern pharmacological studies have demonstrated that C21 steroids are the main active compounds in XAPI. In this study, a sensitive and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated the first time for simultanenous determination of three isomeric pregnane genins (17β‐tenacigenin B, tenacigenin B and tenacigenin A) and their corresponding glycosides (tenacigenoside A, tenacissoside F and marsdenoside I) from XAPI in rat plasma. A simple liquid–liquid extraction technique was used after the addition of dexamethasone acetate as internal standard. The chromatography separation of analytes was achieved on an Agilent Zorbax Eclipse XDB‐C18 column (3.5 µm, 150 × 3 mm i.d.) using methanol–water as mobile phase in a gradient elution program. Detection was performed in multiple reaction monitoring mode using electrospray ionization in the negative ion mode. The method showed satisfactory linearity over a concentration range 5.00–2000.00 ng/mL for tenacigenin B, tenacigenin A, marsdenoside I and tenacissoside F (r2 > 0.99), 10.00–4000.00 ng/mL for 17β‐tenacigenin B and tenacigenoside A (r2 > 0.99). Intra‐ and inter‐day precisions (valued as relative standard deviation) were <9.00% and accuracies (as relative error) in the range ?6.31 to 7.23%. Finally, this validated method was successfully applied to the pharmacokinetic study of XAPI after intravenous administration to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A fast and easy tailored dispersive solid‐phase extraction (d‐SPE) procedure has been developed for the determination of 13 cytostatic drugs. Combined with a rapid and simultaneous ultra performance liquid chromatography/tandem mass spectrometry method for residue identification and quantification in urine, it has been fully validated and tested to study a realistic situation in working environment. The target compounds were chosen from the most common classes used in hospitals. The d‐SPE adsorbent was obtained mixing Oasis HLB® with C18 and applied to a large volume of sample (10 mL). The electrospray ionization‐mass spectrometry acquisition was conducted in a mixed period mode: six acquisition windows were in positive ionization and one in negative (for 5‐fluorouracil). The lowest limit of quantification was found at 0.04 μg/L urine for methotrexate. The absolute recovery of cytotoxic drugs was assessed at two concentrations levels and ranged from 67.1% (cytarabine) to 102.3% (etoposide) and from 65.3% (cytarabine) to 101.2% (methotrexate) for the lower and higher levels, respectively, with the relative standard deviation always <12%. This method gives the opportunity to analyze drugs in a wide molecular weight range (from 130 to 853 a.m.u.) and in a complex matrix, such as urine, without losing any of the features that a method intended for trace quantification must have. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometric (LC‐ESI‐MS/MS) method was developed and validated to simultaneously quantify 11 active compounds (coptisine, jatrorrhizine, berberine, palmatine, baicalin, baicalein, wogonoside, wogonin, rhein, emodin and aloeemodin) from Xiexin decoction (XXD) in rat plasma. Plasma samples extracted by a single‐step protein precipitation procedure were separated using the gradient mode on a Dikma ODS‐C18 column. Selected reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Calibration curves offered satisfactory linearity (r > 0.995) at linear range of 0.47–60 ng/mL for coptisine, jatrorrhizine, berberine and palmatine, 15–1930 ng/mL for baicalin, 20–2560 ng/mL for baicalein, 14–1790 ng/mL for wogonoside, 0.57–72.8 ng/mL for wogonin, 10–1280 ng/mL for rhein, 0.6–76.8 ng/mL for emodin and 3.0–384 ng/mL for aloeemodin. The intra‐ and interday precisions were less than 10.2% in terms of relative standard deviation (RSD), and the accuracies were within ±10.84% in terms of relative error (RE). It was successfully applied to the evaluation of pharmacokinetics after single oral doses of XXD were administered to rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, highly sensitive and rapid method for quantification of olprinone (phosphodiesterase 3 inhibitor) in rabbit plasma using liquid chromatography–tandem mass spectrometry with electrospray was developed. An aliquot of 50 μL of plasma sample was cleaned up and extracted using Ostro? 96‐well plate followed by dilution. Chromatographic separation of olprinone and olprinone‐d3 was carried out on a CORTECS® T3 column within 3 min. Detection was achieved using a triple quadrupole mass spectrometer employing electrospray ionization operated in positive ion multiple reaction monitoring mode using the transitions m/z 251.07 → m/z 155.06 and m/z 254.21 → m/z 158.10 for olprinone and olprinone‐d3, respectively. The method was validated according to US Food and Drug Administration guideline for bioanalytical methods, and showed excellent linearity in the range 10.0–2000.0 ng/mL with coefficient of determination >0.99. The intra‐ and inter‐day precisions (CV) were <5.1% and the accuracies were within the range 99.7–103.2% at all quality control concentrations. Furthermore, olprinone was stable under various stability conditions. The developed method was used for quantification of olprinone in rabbit plasma after its intravenous administration at the dose of 1 mg/kg in order to better understand the metabolism of olprinone in a rabbit model of lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号