首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, selective and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to determine meloxicam in beagle dog plasma. Sample pretreatment involved a one‐step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on a Venusil ASB‐C18 column with mobile phase consisting of methanol–water (containing 0.1% formic acid) (75:25, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization source. Each plasma sample was chromatographed within 4.1 min. The linear calibration curves for meloxicam was obtained in the concentration range of 10.3–4.12 × 103 ng/mL (r ≥ 0.99). The intra‐ and inter‐day precisions (relative standard deviation) were ≤ 15%, and accuracy (relative error) was within ±7.3%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of meloxicam tablets in beagle dog.  相似文献   

4.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC‐MS/MS) was developed for the determination of pseudo‐ginsenoside GQ in human plasma. Liquid–liquid extraction was used to isolate the analyte from biological matrix followed by injection of the extracts onto a C8 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer (API‐4000 system) in multiple reaction monitoring mode using negative electrospray ionization. The mobile phase consisted of methanol–10 mm ammonium acetate (90:10, v/v) and the flow rate was 0.3 mL/min. The method was validated over the concentration range of 5.0–5000.0 ng/mL for plasma. Inter‐ and intra‐day precisions (relative standard deviation) were all within 15% and the accuracy (relative error) was ≤9.4%. The lower limit of quantitation was 5.0 ng/mL. The pseudo‐ginsenoside GQ was stable after 8 h at room temperature, 24 h at autosampler and three freeze–thaw cycles (from ?30 to 25 °C). The method was successfully applied to the pharmacokinetic study of pseudo‐ginsenoside GQ in healthy Chinese volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A fast, selective and sensitive ultraperformance liquid chromatography–tandem mass spectrometry method was developed for determination and pharmacokinetic study of anastrozole in human plasma. Plasma sample pretreatment involved a one‐step extraction with diethyl ether of 500 µL plasma. The chromatographic separation was carried out on an Acquity UPLCTM BEH C18 column with a mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.30 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via electrospray ionization source with positive mode. A high throughput was achieved with a run time of 1.5 min per sample. The standard curve for anastrozole was linear (r2 ≥ 0.99) over the concentration range of 0.0550–27.5 ng/mL with a lower limit of quantification of 0.0550 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 14% and the accuracy (relative error) was within ±3.2% at three quality control levels. This simple, fast and highly sensitive method was fully validated and successfully applied to a clinical pharmacokinetic study of anastrozole in healthy volunteers after oral administration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and reproducible bioanalytical method for the determination of flecainide in human plasma was developed and validated using an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) to obtain higher sensitivity than the current available methods. After simple protein precipitation, flecainide and a stable isotope‐labeled internal standard (IS) were chromatographed on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with isocratic elution of mobile phase consisting of 45% methanol containing 0.1% formic acid at a flow rate 0.25 mL/min. Detection was performed in positive electrospray ionization by monitoring the selected ion transitions at m/z 415.4/301.1 for flecainide and m/z 419.4/305.1 for the IS. The method was validated according to current bioanalytical method validation guidelines. The calibration standard curve was linear from 2.5 to 1000 ng/mL using 0.1 mL of plasma. No significant interferences were detected in blank human plasma. Accuracy and precision in the intra‐ and inter‐batch reproducibility study were within acceptance criteria. Neither hemolysis effects nor matrix effects were observed. The UPLC‐MS/MS method developed was successfully applied to determine plasma flecainide concentrations to support clinical studies and incurred sample reanalysis also ensured the reproducibility of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and reproducible bioanalytical method for the determination of gemcitabine in human plasma treated with tetrahydrouridine (THU) was developed and validated using a hydrophilic interaction ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS). To prevent deamination of gemcitabine, blood was treated with THU, and the plasma samples obtained after centrifugation were used in this study. Gemcitabine and gemcitabine‐13C, 15N2 used as an internal standard, were extracted from human plasma treated with THU using a 96‐well Hybrid SPE‐Precipitation plate. Extracts were chromatographed on a hydrophilic interaction chromatography column with isocratic elution. Detection was performed using Quattro Premier with positive electrospray ionization multiple reaction monitoring mode. The standard curve ranged from 10 to 10,000 ng/mL without carryover. No significant interferences were detected in blank plasma and no interferences by 2′‐2′‐difluoro‐2′‐deoxyuridine, a metabolite of gemcitabine. Accuracy and precision in the intra‐batch reproducibility study using quality control samples with three THU levels did not exceed ±5.4 and 7.3%, respectively, and the inter‐batch reproducibility results also met the criteria. Stability of gemcitabine was ensured in whole blood and plasma as well as stability of THU in solutions. The UPLC‐MS/MS method developed was successfully validated and can be applied for gemcitabine bioanalysis in clinical studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Nifedipine is a dihydropyridine calcium channel blocker used widely in the management of hypertension and other cardiovascular disorders. In this work, a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated to determine nifedipine in dog plasma using nimodipine as the internal standard. Chromatographic separation was carried out on a C8 column. The mobile phase consisted of a mixture of acetonitrile, water and formic acid (60:40:0.2, v/v/v) at a flow rate of 0.5 mL/min. Detection was performed on a triple quadrupole tandem mass spectrometer in selected reaction monitoring mode via an atmospheric pressure chemical ionization source. The method has a lower limit of quantification of 0.20 ng/mL with consumption of plasma as low as 0.05 mL. The linear calibration curves were obtained in the concentration range of 0.20–50.0 ng/mL (r = 0.9948). The recoveries of the liquid extraction method were 74.5–84.1%. Intra‐day and inter‐day precisions were 4.1–8.8 and 6.7–7.4%, respectively. The quantification was not interfered with by other plasma components and the method was applied to determine nifedipine in plasma after a single oral administration of two controlled‐release nifedipine tablets to beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

11.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Costunolide and dehydrocostuslactone are well‐known sesquiterpene lactones contained in many plants used as popular herbs, such as Saussurea lappa and Laurus novocanariensis, and have been considered as potential candidates for the treatment of various types of tumor. In the present work, a sensitive UPLC‐MS/MS for the quantification of costunolide and dehydrocostuslactone in biological matrices has been developed. The method is based on protein precipitation with acetonitrile followed by isocratic ultraperformance liquid chromatographic separation using methanol–formic acid (0.1% in water; 70:30, v/v) mobile phase. Detection was performed by ESI mass spectrometry in MRM mode with the precursor‐to‐product ion transitions m/z 233–187 and m/z 231–185, respectively. The calibration curves of analytes showed good linearity within the established range 0.19–760 ng/mL for costunolide and 0.23–908 ng/mL for dehydrocostuslactone. The lower limits of quantification of costunolide and dehydrocostuslactone were found to be 0.19 and 0.23 ng/mL, respectively. The intra‐day and inter‐day presicions of this method for the entire validation were less than coefficient of variation of 7% and the accuracy was within ±8% (relative error). The mean extraction recoveries were 73.8 and 75.3%, respectively. The method was found to be precise, accurate and specific during the study, and was successfully used to analyze the pharmacokinetics of costunolide and dehydrocostuslactone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
To characterize the preclinical plasma pharmacokinetics of entrectinib, a reproducible and precise assay is necessary. In this study, we developed and validated a simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method for the measurement of entrectinib using carbamazepine as the internal standard in rat plasma. Sample preparation was a simple protein precipitation with acetonitrile, then entrectinib was eluted on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) using a gradient elution with a mobile phase composed of acetonitrile (A) and 0.1% formic acid in water (B). Detection was achieved using multiple‐reaction monitoring in positive ion electrospray ionization mode. The method showed good linearity over the concentration range of 1–250 ng/mL (r2 > 0.9951). The intra‐ and inter‐day precision was determined with the values of 6.3–12.9 and 2.6–6.9%, respectively, and accuracy values of 0.5–11.6%. Matrix effect, extraction recovery, and stability data all met the acceptance criteria of US Food and Drug Administration guidelines for bioanalytical method validation. The method was successfully applied to a pharmacokinetic study. In this study, we developed the complete validated method for the quantification of entrectinib in rat plasma.  相似文献   

14.
A sensitive and specific high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC‐ESI‐MS/MS) method was developed and validated for determination of rupestonic acid in rat plasma. Protein precipitation method was used to extract rupestonic acid and the internal standard (IS) warfarin sodium from rats plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol–0.1% formic acid in water (40:60, v/v), pumped at 0.4 mL/min. Rupestonic acid and the internal standard (IS) warfarin sodium were detected at m/z 247.2 → 203.1 and 307.1 → 161.3 in positive ion and multiple reaction monitoring mode respectively. The standard curves were linear over the concentration range of 2.5–5000 ng/mL (r2 > 0.99). The within‐day and between‐day precision values for rupestonic acid at four concentrations were 4.7–5.7 and 4.4–8.7%, respectively. The method described herein was fully validated and successfully applied to the pharmacokinetic study after an intravenous administration of rupestonic acid in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Sildenafil is used to treat pulmonary hypertension in neonatal and pediatric patients. Pharmacokinetic studies in these patients are complicated by the limited sample volume. We present the validation results of an assay method to quantitate sildenafil and desmethylsildenafil simultaneously in 50 µL of plasma. Deuterated sildenafil was used as an internal standard. After liquid–liquid extraction, analytes were separated on an ultra‐performance liquid chromatography (UPLC)‐column and quantified via tandem mass spectrometry. The calibration range was linear, with acceptable accuracy and a precision of <15% for both compounds. The lower limits of quantification were 1 ng/mL. Matrix effects were present, but inter‐plasma batch variability was under 12%. The method was successfully applied to samples from a pharmacokinetic study into sildenafil pharmacokinetics in neonates, making maximum use of the limited number and amount of plasma samples available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and sensitive method based on ultra‐high‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for the determination of TM‐2, which was a novel semi‐synthetic taxane derivative in beagle dog plasma. Cabazitaxel was chosen as internal standard. Following extraction by methyl tert‐butyl ether, the chromatographic separation was achieved on a Thermo Syncronis C18 column (50 × 2.1 mm, 1.7 µm) by gradient elution within a runtime of 3.5 min. The mobile phase consisted of (A) acetonitrile and (B) 2 mmol/L ammonium acetate in water. The detection was accomplished using positive ion electrospray ionization in multiple reaction monitoring mode. The MS/MS ion transitions were monitored at m/z 812.39 → 551.35 for TM‐2 and 836.36 → 555.26 for IS, respectively. The method was linear for TM‐2 (r = 0.9924) ranging from 2.5 to 1000 ng/mL. The intra‐day and inter‐day precisions (relative standard deviation) were within 8.0 and 17.6%, respectively, and the accuracy (relative error) was less than 2.3%. The extraction recovery ranged from 83.1 to 97.1%. The reliable method was successfully applied to a pharmacokinetic study of TM‐2 in beagle dogs after intravenous drip with different doses of 0.6, 1.2, and 2.4 mg/kg, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Angiotensin‐converting enzyme (ACE) plays an important role in the renin–angiotensin system and ACE activity is usually assayed in vitro by monitoring the transformation from a substrate to the product catalyzed by ACE. A rapid and sensitive analysis method or ACE activity by quantifying simultaneously the substrate hippuryl–histidyl–leucine and its product hippuric acid using an ultra‐performance liquid chromatography coupled with electrospray ionization‐mass spectrometry (UPLC‐MS) was first developed and applied to assay the inhibitory activities against ACE of several natural phenolic compounds. The established UPLC‐MS method showed obvious advantages over the conventional HPLC analysis in shortened running time (3.5 min), lower limit of detection (5 pg) and limit of quantification (18 pg), and high selectivity aided by MS detection in selected ion monitoring (SIM) mode. Among the six natural products screened, five compounds, caffeic acid, caffeoyl acetate, ferulic acid, chlorogenic acid and resveratrol indicated potent in vitro ACE inhibitory activity with IC50 values of 2.527 ± 0.032, 3.129 ± 0.016, 10.898 ± 0.430, 15.076 ± 1.211 and 6.359 ± 0.086 mm , respectively. A structure–activity relationship estimation suggested that the number and the situation of the hydroxyls on the benzene rings and the acrylic acid groups may play the most predominant role in their ACE inhibitory activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号