首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Naphthoquine (NQ) is one of important partner drugs of artemisinin‐based combination therapy (ACT), which is recommended for the treatment of uncomplicated Plasmodium falciparum. NQ shows a high cure rate after a single oral administration. It is absorbed quickly (time to peak concentration 2–4 h) and has a long elimination half‐life (255 h). However, the metabolism of NQ has not been clarified. In this work, the metabolite profiling of NQ was studied in six liver microsomal incubates (human, cynomolgus monkey, beagle dog, mini pig, rat and CD1 mouse), seven recombinant CYP enzymes (1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and rat (plasma, urine, bile and feces) using liquid chromatography tandem high‐resolution LTQ‐Orbitrap mass spectrometry (HRMSn) in conjunction with online hydrogen/deuterium exchange. The biological samples were pretreated by protein precipitation and solid‐phase extraction. For data processing, multiple data‐mining tools were applied in tandem, i.e. background subtraction and followed by mass defect filter. NQ metabolites were characterized by accurate MS/MS fragmentation characteristics, the hydrogen/deuterium exchange data and cLogP simulation. As a result, five phase I metabolites (M1–M5) of NQ were characterized for the first time. Two metabolic pathways were involved: hydroxylation and N‐oxidation. This study demonstrates that LC‐HRMSn in combination with multiple data‐mining tools in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs.  相似文献   

2.
Echinacoside (ECH) and acteoside (ACT), as the most and major active components of Cistanche tubulosa, were reported to possess cardioactive, neuroprotective and hepatocyte protective effects, as well as antibacterial, antioxidative effects. Recently, more studies have focused on their pharmacological activities. However, their metabolic profiles in vivo have not been sufficiently investigated. This study proposes an approach for rapidly identifying the complicated and unpredictable metabolites of ECH and ACT in rat plasma, bile, urine and feces, and systematically and comprehensively revealing their major metabolic pathways, based on powerful ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. Plasma, bile, urine and feces were collected from rats after a single 200 mg/kg oral dose. A total of 49 metabolites were detected in rat biological samples. Through analyzing metabolites in bile samples, it was found that ECH and ACT were subjected to a marked hepatic first‐pass effect in liver. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Formononetin‐7‐O‐β‐d ‐glucoside has been proved to have significant anti‐inflammatory effect. To evaluate its rat pharmacokinetics, a rapid, sensitive, and specific liquid chromatography–tandem mass spectrometry method has been developed and validated for the quantification of formononetin‐7‐O‐β‐d ‐glucoside and its main metabolite formononetin in rat plasma. Samples were pretreated using a simple protein precipitation and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water and acetonitrile both containing 0.1% formic acid. Both analytes were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. The assay showed wide linear dynamic ranges of both 0.10–100 ng/mL, with acceptable intra‐ and inter‐batch accuracy and precision. The lower limits of quantification were both 0.10 ng/mL using 50 μL of rat plasma for two analytes. The method has been successfully used to investigate the oral pharmacokinetic profiles of both analytes in rats. After oral administration of formononetin‐7‐O‐β‐d ‐glucoside at the dose of 50 mg/kg, it was rapidly absorbed in vivo and metabolized to its metabolite formononetin. The plasma concentration‐time profiles both showed double‐peak phenomena, which would be attributed to the strong enterohepatic circulation of formononetin‐7‐O‐β‐d ‐glucoside.  相似文献   

4.
Artemisinin‐based combination therapy is widely used for the treatment of uncomplicated Plasmodium falciparum malaria, and piperaquine (PQ) is one of important partner drugs. The pharmacokinetics of PQ is characterized by a low clearance and a large volume of distribution; however, metabolism of PQ has not been thoroughly investigated. In this work, the metabolite profiling of PQ in human and rat was studied using liquid chromatography tandem high‐resolution LTQ‐Orbitrap mass spectrometry (HRMS). The biological samples were pretreated by solid‐phase extraction. Data processes were carried out using multiple data‐mining techniques in tandem, i.e., isotope pattern filter followed by mass defect filter. A total of six metabolites (M1–M6) were identified for PQ in human (plasma and urine) and rat (plasma, urine and bile). Three reported metabolites were also found in this study, which included N‐oxidation (M1, M2) and carboxylic products (M3). The subsequent N‐oxidation of M3 resulted in a new metabolite M4 detected in urine and bile samples. A new metabolic pathway N‐dealkylation was found for PQ in human and rat, leading to two new metabolites (M5 and M6). This study demonstrated that LC‐HRMSn in combination with multiple data‐mining techniques in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and specific method was developed and validated for the quantitation of one major metabolite of genipin in rats plasma. The major metabolite was isolated from rat bile via semi‐preparative HPLC technology and its chemical structure was identified as genipin‐1‐o‐glucuronic acid (GNP‐GLU), which was for the first time used as a standard compound for quantitative analysis in rat plasma after administration of genipin. The application of high‐performance liquid chromatography–tandem mass spectrometry in negative mode in multiple reaction monitoring mode was investigated. Chromatographic separation was achieved on an Eclipse XDB‐C18 column using a mobile phase consisting of water with 0.1% formic acid (A)–acetonitrile (B). The limit of detecation was 0.214 ng/mL and the lower limit of quantification was 0.706 ng/mL. The calibration curve was linear from 1.27 to 3810 ng/mL for plasma samples, with a correlation coefficient of 0.9924. The intra‐ and inter‐day precisions and accuracy were all within 15%. The recoveries of GNP‐GLU and puerarin were above 90.0 and 76.2%, respectively. The highly sensitive method was successfully applied to estimate pharmacokinetic parameters of GNP‐GLU following oral and intravenous administration of genipin to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
An arsenic–selenium metabolite that exhibited the same arsenic and selenium X‐ray absorption near‐edge spectra as the synthetic seleno‐bis(S‐glutathionyl) arsinium ion [(GS)2AsSe]? was recently detected in rabbit bile within 25 min after intravenous injection of rabbits with sodium selenite and sodium arsenite. X‐ray absorption spectroscopy did not (and cannot) conclusively identify the sulfur‐donor in the in vivo sample. After similar treatment of rabbits, we analyzed the collected bile samples by size‐exclusion chromatography (SEC) using inductively coupled plasma atomic emission spectroscopy (ICP‐AES) to monitor arsenic, selenium and sulfur simultaneously. The bulk of arsenic and selenium eluted in a single peak, the intensity of which was greatly increased upon spiking of the bile samples with synthethic [(GS)2AsSe]?. Hence, we identify [(GS)2AsSe]? as the major metabolite in bile after exposure of rabbits to selenite and arsenite. The reported SEC–ICP‐AES method is the first chromatographic procedure to identify this biochemically important metabolite in biological fluids and is thus a true alternative to X‐ray absorption spectroscopy, which is not available to many chemists. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Tianma‐Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio‐cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC–Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4′‐tetrahydroxystilbene‐2‐Oβ‐d ‐glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.  相似文献   

8.
In this study, a qualitative and quantitative analysis using high‐performance liquid chromatography coupled to electrospray ionization and quadrupole time‐of‐flight mass spectrometry was performed for the quality control of Bu‐Shen‐Yi‐Qi‐Fang, a traditional Chinese formula used for asthma. Thirty‐four compounds, including flavonoids, isoflavonoids, triterpenoid saponins, and iridoid glycosides were identified or tentatively characterized by comparing their retention times and mass spectra with those of authentic standards or literature data. Sixteen components were considered as the main bioactive constituents of Bu‐Shen‐Yi‐Qi‐Fang and they were chosen as the chemical markers in quantitative analysis, including catalpol, leonuride, calycosin‐7‐O‐β‐d ‐glucoside, hyperoside, acteoside, formononetin‐7‐O‐β‐d ‐glucoside, epimedin A, calycosin, icariin, epimedin B, epimedin C, formononetin, astragaloside IV, astragaloside II, baohuoside‐I, and astragaloside I. The total run time was 20 min. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.99) within the test ranges. The relative standard deviations for intra‐ and inter‐day precisions were below 3.9 and 11.7%, respectively. The accuracy was evaluated by the recovery test within the range of 89.20–110.71% with the relative standard deviation < 4.8%. The sample was stable for at least 48 h at 4°C. The results showed that the new approach was effective for the quality control of Bu‐Shen‐Yi‐Qi‐Fang.  相似文献   

9.
A rapid, selective and sensitive UPLC‐UV method was developed and validated for the quantitative analysis of carbamazepine and its epoxide metabolite in rat plasma. A relatively small volume of plasma sample (200 μL) is required for the described analytical method. The method includes simple protein precipitation, liquid–liquid extraction, evaporation, and reconstitution steps. Samples were separated on a Waters Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) with a gradient mobile phase consisted of 60:40 going to 40:60 (v/v) water–acetonitrile at a flow rate of 0.5 mL/min. The total run time was as low as 6 min, representing a significant improvement in comparison to existing methods. Excellent linearity (r2 > 0.999) was achieved over a wide concentration range. Close to complete recovery, short analysis time, high stability, accuracy, precision and reproducibility, and low limit of quantitation were demonstrated. Finally, we successfully applied this analytical method to a pre‐clinical oral pharmacokinetic study, revealing the plasma profiles of both carbamazepine and carbamazepine‐10,11‐epoxide following oral administration of carbamazepine to rats. The advantages demonstrated in this work make this analytical method both time‐ and cost‐efficient approach for drug and metabolite monitoring in the pre‐clinical/clinical laboratory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
An ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry method was established to detect as many constituents in rat plasma as possible after oral administration of Radix polygoni multiflori (RPM) extract. A C18 column (150 × 2.0 mm, 4 µm) was adopted to separate the samples, and mass spectra were acquired in negative modes. The fingerprints of RPM extract were established, resulting in 39 components being detected. Among these compounds, 29 were identified by comparing the retention times and mass spectral data with those of reference standards and relevant references, and eight compounds were separated and detected in RPM for the first time. In vivo, 23 compounds were observed in dosed rat plasma, 16 of 23 compounds were indicated as prototype components of RPM, and seven compounds were predicted to be metabolites of RPM. A high‐speed and sensitive method was developed and was successfully utilized for screening and characterizing the ingredients and metabolites of RPM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
2,3,5,4′‐Tetrahydroxystilbene‐2‐O‐β‐D‐glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti‐inflammatory and hepatoprotective activities. Ultra‐performance LC‐quadrupole TOF‐MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MSn methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC‐MSn. The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra‐performance LC‐MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long‐term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.  相似文献   

12.
A high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry method was established to detect as many constituents in rat biological fluids as possible after oral administration of Shuanghua Baihe tablets (SBT). An Agilent Poroshell 120 EC‐C18 column was adopted to separate the samples, and mass spectra were acquired in positive and negative modes. First, the fingerprints of SBT were established, resulting in 32 components being detected within 40 min. Among these compounds, 12 were tentatively identified by comparing the retention times and mass spectral data with those of reference standards and the reference literature; the other 20 components were tentatively assigned solely based on the MS data. Furthermore, metabolites in rat plasma and urine after oral administration of SBT were also analyzed. A total of 19 compounds were identified, including 13 prototypes and six metabolites through metabolic pathways of demethylation and glucuronide conjugation. Glucuronidated alkaloids were the main constituents in the plasma, and were then excreted from urine. This is the first systematic study on the metabolic profiling of SBT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Epimedin C, an ingredient of Herba Epimedii, has potential for treatment of cardiovascular disease and bone loss. However, there is still no sensitive analytical method to monitor epimedin C in biological samples. The goal of this study was to develop a sensitive and reliable method based on a LC‐MS/MS for evaluating the pharmacokinetics of epimedin C after administration of Herba Epimedii in rat. Electrospray ionization in positive‐ion mode and multiple reaction monitoring were used to identify and quantitate active components. Analytes were separated by a reverse‐phase C18 column. Liquid–liquid extraction using ethyl acetate, evaporation and reconstitution was used to plasma sample preparation. Mass transition of precursor ion → product ion pairs were monitored at m/z 823.4 → 313.1 for epimedin C and m/z 237.1 → 178.9 for carbamazepine (internal standard). A calibration curve gave good linearity (r > 0.999) over the concentration range 2.5–500 ng/mL. Pharmacokinetic data demonstrated that there was rapid distribution and slow elimination after epimedin C administration (1 mg/kg, i.v.). Oral bioavailabilities of epimedin C in the pure compound and in the Herba Epimedii were around 0.58% and 0.13%, respectively. The result suggests that other herbal ingredients of Herba Epimedii may suppress the oral bioavailability of epimedin C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Liu M  Zhao S  Wang Z  Wang H  Shi X  Lü Z  Xu H  Wang H  Du Y  Zhang L 《Journal of separation science》2011,34(22):3200-3207
Epimedin C is one of the major bioactive constituents of Herba Epimedii. The aim of this study is to characterize and elucidate the structure of metabolites in the rat after administration of epimedin C. Metabolite identification was performed using a predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (pMRM-IDA-EPI) scan in positive ion mode on a hybrid triple quadrupole-linear ion trap mass spectrometer. A total of 18 metabolites were characterized by the changes in their protonated molecular masses, their MS/MS spectrum and their retention times compared with those of the parent drug. The results reveal possible metabolite profiles of epimedin C in rats; the metabolic pathways including hydrolysis, hydroxylation, dehydrogenation, demethylation and conjugation with glucuronic acid and different sugars were observed. This study provides a practical approach for rapidly identifying complicated metabolites, a methodology that could be widely applied for the structural characterization of metabolites of other compounds.  相似文献   

15.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

16.
To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra‐high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid–liquid extraction and separated on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone‐related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid‐related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid‐related metabolites. It is concluded the developed UHPLC‐Q‐TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD.  相似文献   

17.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, robust, and rapid LC‐MS/MS method was developed for the quantitation of U0126 and validated in rat plasma. Plasma samples (20 μL) were deproteinized using 200 μL ACN containing 30 ng/mL of chlorpropamide, internal standard. Chromatographic separation performed on an Agilent Poroshell 120 EC‐C18 column (4.6 × 50 mm, 2.7 μm particle size) with an isocratic mobile phase consisting of a 70:30 v/v mixture of ACN and 0.1% aqueous formic acid. Each sample was run at 0.6 mL/min for a total run time of 2 min per sample. Detection and quantification were performed using a mass spectrometer in selected reaction‐monitoring mode with positive ESI at m/z 381 → 123.9 for U0126 and m/z 277 → 175 for the internal standard. The standard curve was linear over a concentration range of 20–5000 ng/mL with correlation coefficients greater than 0.9965. Precision, both intra‐ and interday, was less than 10.1% with an accuracy of 90.7–99.4%. No matrix effects were observed. U0126 in rat plasma degraded approximately 41.3% after 3‐h storage at room temperature. To prevent degradation, sample handling should be on an ice bath and all solutions kept at 4°C. This method was successfully applied to a pharmacokinetic study of U0126 at various doses in rats.  相似文献   

19.
The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital‐pretreated rats and detected by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3′(R)‐hydroxy‐nodakenetin‐3′‐ol and 3′(S)‐hydroxy‐nodakenetin‐3′‐ol, respectively, on the basis of their 1H‐NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP‐HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C18 column, a mobile phase with MeOH‐H2O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat‐inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50–400, 20–120 and 150–24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Ganoderic acid B (GAB), a representative triterpenoid in Ganoderma lucidum, possesses various pharmaceutical effects and has been used as a chemical marker in quality control of G. lucidum and related products. The metabolites of GAB in vivo after its oral administration to rats were investigated by liquid chromatography coupled with electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. A total of 14 metabolites of GAB in rat plasma, bile and various organs were detected and identified by direct comparison with the authentic compounds and their characteristic mass fragmentation patterns. The results showed that oxidization and hydroxylation were the common metabolic pathways for GAB in rats. Moreover, some reduction metabolites of GAB were detected in rat kidney and stomach and glucuronidation only appeared in rat bile. This is the first report on the metabolites of GAB in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号