首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

2.
A rapid and highly selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of polygalasaponin F (PF) in rat plasma was developed and validated. The chromatographic separation was achieved on a reverse‐phase Zorbax SB‐C18 column (150 × 4.6 mm, 5 µm), using 2 mm ammonium acetate (pH adjusted to 6.0 with acetic acid) and acetonitrile (25:75, v/v) as a mobile phase at 30 °C. MS/MS detection was performed using an electrospray ionization operating in positive ion multiple reaction monitoring mode by monitoring the ion transitions from m/z 1091.5 → 471.2 (PF) and m/z 700.4 → 235.4 (internal standard), respectively. The calibration curve showed a good linearity in the concentration range 0.0544–13.6 µg/mL, with a limit of quantification of 0.0544 µg/mL. The intra‐ and inter‐day precisions were <9.7% in rat plasma. The method was validated as per US Food and Drug Administration guidelines and successfully applied to pharmacokinetic study of PF in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

5.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, rapid and reliable liquid chromatography–electrospray ionization tandem mass spectrometry method was established and validated for the determination of methotrexate in human plasma. After a straightforward protein precipitation by acetonitrile–water (70:30, v/v), methotrexate (MTX) and p‐aminoacetophenone (used as internal standard, IS) were separated on a Column C18 column (50 × 2.1 mm, 3 µm; Column Technology, Fremont, CA, USA) using a gradient elution with mobile phase of acetonitrile and 0.03% acetic acid aqueous solution at a flow rate of 0.5 mL/min. The total chromatographic runtime was 5 min for each injection. Quantification detection was performed in a triple‐quadruple tandem mass spectrometer under positive mode monitoring the following mass transitions: m/z 455.3 → 308.3 for MTX and m/z 136.1 → 94.4 for IS. The calibration curve was linear over the range of 0.05–25.0 µmol/L with a lower limit of quantification of 0.05 µmol/L. The intra‐ and interday precisions were <5.2%, the accuracy varied from ?4.1 to 4.5%. The recovery was >94%. The LC‐MS/MS method showed an excellent agreement with the existing HPLC‐UV method using Passing–Bablok regression and Bland–Altman difference plot analysis. The validated LC‐MS/MS can be successfully applied to the routine therapeutic drug monitoring of MTX in clinical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

11.
A simple, robust, and rapid LC–MS/MS method has been developed and validated for the simultaneous quantitation of clopidogrel and its active metabolite (AM) in human plasma. Tris(2‐carboxyethyl)phosphine (TCEP) was used as a reducing agent to detect the AM as a disulfide‐bonded complex with plasma proteins. Mixtures of TCEP and human plasma were deproteinized with acetonitrile containing 10 ng/mL of clopidogrel‐d4 as an internal standard (IS). The mixtures were separated on a C18 RP column with an isocratic mobile phase consisting of 0.1% formic acid in acetonitrile and water (90:10, v/v) at a flow rate of 0.3 mL/min. Detection and quantification were performed using ESI‐MS. The detector was operated in selected reaction‐monitoring mode at m/z 322.0→211.9 for clopidogrel, m/z 356.1→155.2 for the AM, and m/z 326.0→216.0 for the IS. The linear dynamic range for clopidogrel and its AM were 0.05–20 and 0.5–200 ng/mL, respectively, with correlation coefficients (r) greater than 0.9976. Precision, both intra‐ and interday, was less than 8.26% with an accuracy of 87.6–106%. The validated method was successfully applied to simultaneously analyze clinical samples for clopidogrel and its AM.  相似文献   

12.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

13.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Tubuloside B, a novel neuroprotective phenylethanoid, is a major active constituent of Cistanche tubulosa and Cistanche deserticola. A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the quantification of tubuloside B in rat plasma. Sample preparation was conducted through a protein‐precipitation extraction with methanol using tubuloside A as internal standard (IS). Chromatographic separation was achieved using a Capcell Pak C18 column (2.0 × 50 mm, 5 μm) with a mobile phase of methanol–10 mm ammonium acetate buffer (70:30, v/v) in an isocratic elution. Mass spectrometry analysis was performed in negative ionization mode with selected reaction monitoring transitions at m/z 665.1 → 160.9 for tubuloside B, and m/z 827.1 → 160.9 for IS. Calibration curves were linear over the range of 1.64–1640 ng/mL for plasma samples samples (R2 > 0.990). The lower limit of quantification (LLOQ) was 1.64 ng/mL. The intra‐ and inter‐day accuracy was between 92.3 and 113.0% with the RSD <9.23% at all LLOQ and quality control levels. Finally, this method was successfully applied in the pharmacokinetics study of tubuloside B after intravenous administration.  相似文献   

15.
A rapid, selective and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining bencycloquidium bromide (BCQB) in beagle dog plasma. The plasma sample was deproteinized with methanol which contained l‐ethyl‐bencycloquidium bromide as internal standard, and supernantant was assayed by LC‐MS/MS. The chromatographic separation was performed on a Phenomenex C18 column (100 × 2.0 mm, i.d., 3.0 μm) with a gradient programme mobile phase consisting of methanol and ammonium acetate (5 mm) containing 0.15% acetic acid and at a flow rate of 0.3 mL/min. Electrospray ionization in positive ion mode and selective reaction monitoring was used for the quantification of BCQB with a monitored transitions m/z 330.2 → 142.1 for BCQB and m/z 344.2 → 126.2 for IS. Validation results indicated that the lower limit of quantification was 0.05 ng/mL and the assay exhibited a linear range of 0.05–10.0 ng/mL and gave a correlation coefficient of 0.9998. The intra‐ and inter‐run precisions of the assay were 1.7–4.6 and 3.2–15.6%, respectively, and the intra‐ and inter‐day accuracies were ?8.8 to 1.1 and ?5.0 to 4.6%, respectively. The developed method was applied for the pharmacokinetic study of BCQB in beagle dogs following a single intranasal dose. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

17.
A sensitive, rapid and specific LC‐MS‐MS method was established and validated for determination of methyl kulonate, a major bioactive constituent isolated from Meliae Cortex, in rat plasma. Plasma samples were treated by precipitating protein with methanol and were chromatographed using a Capcell Pak C18 column (100 × 4.6 mm, 5 µm) with the mobile phase comprising a mixture of methanol, 10 m m ammonium formate and formic acid (95:5:0.1, v/v/v). Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive atmospheric ionization at m/z 467 → 311 for methyl kulonate, and m/z 469 → 451 for dubione B (internal standard), respectively. A good linear response was observed over the concentration range 1.00–500 ng/mL with the lower limit of quantification 1.00 ng/mL in rat plasma. The method also afforded satisfactory results base on sensitivity, specificity, precision, accuracy, recovery, freeze–thaw and long‐time stability. The validated method was successfully applied to determine the pharmacokinetic properties of methyl kulonate in rats after oral administration at dose of 100 mg/kg. This pharmacokinetic study of methyl kulonate is reported here for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous quantification of escin Ia and escin Ib in human plasma. After a solid‐phase extraction (SPE), the analytes were separated on a Zorbax Extend C18 column by isocratic elution with a mobile phase of methanol–acetonitrile–10 mm ammonium acetate (27:27:46, v/v/v) at a flow rate of 1.0 mL/min and analyzed by mass spectrometry in the positive ion multiple reaction monitoring mode. The precursor to product ion transitions of m/z 1131.8 → 807.6 was used to quantify escin Ia and escin Ib. Good linearity was achieved over a wide range of 2.00–900 ng/mL for escin Ia and 1.50–662 ng/mL for escin Ib. The intra‐ and inter‐day precisions (as relative standard deviation) were less than 11% for each QC level of escin Ia and escin Ib. The accuracies (as relative error) were within ±5.27% for escin Ia and within ±4.07% for escin Ib. The method was successfully employed in a pharmacokinetic study after a single intravenous infusion administration of sodium aescinate injection containing 10 mg escin to each of the 10 healthy volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
HR011303 is a novel and highly selective urate transporter 1 (URAT1) inhibitor. In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for quantification of HR011303 in beagle dog plasma. Plasma samples were pretreated with protein‐precipitation extraction by acetonitrile and added with a trifluoromethyl substituted analog of HR011303 as internal standard. The chromatographic separation was performed on a Shiseido C18 column (100 × 4.6 mm, i.d., 5 μm) by mobile phases consisting of 5 mm ammonium–formic acid (100:0.1) and acetonitrile–formic acid (100:0.1) solutions in gradient elution. The MS detection was conducted in electrospray positive ionization with multiple reactions monitoring at m/z 338 → 240 for HR011303 and m/z 328 → 230 for the internal standard using 25 eV argon gas collision induced dissociation. The established LC–MS/MS method showed good selectivity, sensitivity, precision and accuracy. The plasma pharmacokinetics of HR011303 in beagle dogs following both oral and intravenous administration were then successfully evaluated using this LC–MS/MS method.  相似文献   

20.
Lysyl oxidase enzymes are reported to be involved in patho‐physiological process such as tumorigenesis. β‐Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase activity, suggesting a potentially useful therapeutic of interest in oncology. This paper describes the first assay concerning the quantification of BAPN by mass spectrometry. A high‐performance liquid chromatography tandem mass spectrometry (LC‐MS/MS) assay was developed for the quantification of BAPN in plasma and tumor of mice. This method combines dansyl chloride (Dns) derivatization and extraction using a solid‐phase extraction Oasis© Max column. Deuterated BAPN was used as internal standard (IS). Separation was achieved using an C18 column HypersylGold, (ThermoElectron), 3.0 µm (100 × 2.1 mm i.d.). Gradient elution with water containing 0.1% acetic acid (A) and acetonitrile containing 0.1% acetic acid (B) was applied. Detection was performed with an electrospray ionization interface operating in negative ion mode. Selected reaction monitoring was used with ion transitions m/z 302 → 249 for BAPN–Dns and m/z 306 → 250 for the IS. The method was fully validated in plasma and was linear and sensitive in the range of 10–500 ng/mL. The lower limit of quantification in plasma was 2.5 ng/mL. This validated assay was successfully applied to a kinetic study of BAPN in mouse plasma and demonstrates that BAPN reaches the tumoral tissue. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号