首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Psoralea Corylifolia L. is a traditional Chinese medicine with many beneficial effects in medical therapies. Bakuchiol was the main active ingredient of Psoralea Corylifolia L., used for the treatment of various diseases and also as a natural food additive. A specific and reliable ultra‐high performance liquid chromatography–tandem mass spectrometry has been developed and fully validated for the quantification of bakuchiol in rat plasma. Chromatographic separation of bakuchiol and an internal standard, daidzein, was achieved on a Hypersil Gold C18 column with gradient elution that consisted of methanol and water at a flow rate of 0.2 mL/min. The compounds were detected at negative ionization mode using mass transition m/z 255.2 → 172.0 and 252.9 → 132.0 for bakuchiol and daidzein, respectively. Good linearity was obtained over the range of 2–1000 ng/mL and the lower limit of quantification was 2 ng/mL. The intra‐ and inter‐day accuracies ranged from 91.1 to 105.7% and precisions (relative standard deviations) were within 9.3%. Bakuchiol was found to be stable under three freeze–thaw cycles, short‐term temperature, post‐preparative and long‐term temperature conditions. The method was applied to a pharmacokinetic study of bakuchiol intravenously administered to rats at a dose of 5 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Ketamine is widely used in medicine in combination with several benzodiazepines, including midazolam. The objectives of this study were to develop a novel HPLC‐MS/selected reaction monitoring (SRM) method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well‐known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 × 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μm . The precision (CV) and accuracy (NOM) observed were 3.9–7.8 and 95.9–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentrations and Km values of 18.4, 13.8 and 30.8 μm for rat, dog and human liver S9 fractions were observed, respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed that the formation of norketamine is mediated by CYP3A but results suggest an important contribution from other isoenzymes, most likely CYP2C particularly in rat. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A simple pretreatment method with liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed and validated to simultaneously determine dichlorvos and phoxim in tobacco and soil matrices. Satisfactory linearity (R2 ≥ 0.9991) of the method was obtained for both analytes. The limits of detection and limits of quantification for dichlorvos and phoxim in three matrices were 0.0015–0.006 and 0.005–0.02 mg/kg, respectively. Average recoveries were 78.24–92.21% for dichlorvos and 76.62–100.51% for phoxim in soil, green tobacco leaves and cured tobacco leaves. The intra‐ and inter‐day relative standard deviations were <6%. The established method was successfully applied for the residual analysis of dichlorvos and phoxim in real soil and tobacco samples. The results indicated that the established method could be used to detect trace amounts of dichlorvos and phoxim in tobacco. The data could also help the Chinese government establish maximum residue limits of dichlorvos and phoxim on tobacco and establish proper and safe use of dichlorvos and phoxim on tobacco plants in China.  相似文献   

5.
Endocannabinoids (eCBs) are endogenous ligands of the endocannabinoid system that are known to regulate several physiological and behavioral processes. Previous studies have developed methods for the detection of main eCBs including arachidonylethanolamide (AEA) and 2‐arachidonoylglycerol (2‐AG), mostly in serum or plasma. Whole blood is a superior biomaterial for eCBs analysis owing to the nature of the shortened isolation procedure and decreased risk of 2‐AG isomerization during preparation. In this study, a surrogate analyte‐based liquid chromatography–tandem mass spectrometry assay was developed for the measurement of AEA, 2‐AG and its isomer 1‐arachidonoylglycerol (1‐AG) using a maximum of 100 μL whole blood. Chromatographic separation was achieved using a reverse‐phase column and a gradient elution. Detection was performed in selected reaction monitoring mode with an electrospray ionization source. The limits of detection of three eCBs were 0.05–0.1 ng/mL. Good linearity was observed over the concentration range. Intra‐ and inter‐assay accuracy and precision were ≤10.9 and ≤8.7% at four quality control levels. The response factor and parallelism experiment illustrated that the surrogate analytes were suitable for accurate quantification of the main eCBs in whole blood. This surrogate analyte approach was successfully applied to authentic blood samples obtained from alcohol negative drivers and those under the influence of alcohol.  相似文献   

6.
A rapid and sensitive liquid chromatography–isotope dilution tandem mass spectrometry method was developed and validated for quantification of itraconazole (ITZ) and its active metabolite hydroxyitraconazole (OH‐ITZ ) in human plasma. The plasma samples were extracted with tert‐butyl methyl ether and two isotope‐labeled internal standards (D5‐itraconazole and D5‐hydroxyitraconazole) were used. The chromatographic separation was performed on a Capcell Pak C18 MG III (100 × 2 mm, 5 µm, Shiseido). The protonated ions of analytes were detected in positive ionization in multiple reaction monitoring mode. The plasma method has a lower limit of quantification of 1 ng/mL with a linearity range of 1–500 ng/mL for ITZ and OH‐ITZ using 100 µL of plasma. The recoveries of the method were found to be 69.47–71.98% for ITZ and 75.68–82.52% for OH‐ITZ. The intra‐ and inter‐batch precision was less than 11% for all quality control samples at concentrations of 2.5, 200 and 400 ng/mL. These results indicate that the method was efficient with a short run time (4.5 min) and acceptable accuracy, precision and sensitivity.The validated method was successfully applied to analysis of human plasma samples in pharmacokinetics study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Electron ionization mass spectrum of sarin(Se) was interpreted in compare of sarin MS spectrum. Inhibition of butyrylcholinesterase of human plasma by sarin and sarin(Se) was determined spectrophotometrically using modified Ellman method. It appeared that after incubation with sarin and sarin(Se), cholinesterase inhibition were 93% and 83%, respectively. Sarin, sarin(Se), and sarin(Se)‐d7 were spiked into a vial containing human plasma, and albumin adduct metabolites were identified using liquid chromatography–tandem mass spectrometry. The experiments show that these agents are attached to tyrosine on albumin in human blood. Corresponding deuterated adducts were used to confirm the proposed mechanisms for the formation of the fragments in mass spectrometry experiments.  相似文献   

8.
Danhong Injection (DHI) as a Chinese patent medicine is mainly used to treat ischemic encephalopathy and coronary heart disease in combination with other chemotherapy. However, the information on DHI's potential drug interactions is limited. The goal of this work was to examine the potential P450‐mediated metabolism drug interaction arising from DHI and its active components. The results showed that DHI inhibited CYP2C19, CYP2D6, CYP3A4, CYP2E1 and CYP2C9 with IC50 values of 1.26, 1.42, 1.63, 1.10 and 1.67% (v/v), respectively. Danshensu and rosmarinic acid inhibited CYP2E1 and CYP2C9 with IC50 values of 36.63 and 75.76 μm , and 34.42 and 76.89 μm , respectively. Salvianolic acid A and B inhibited CYP2D6, CYP2E1 and CYP2C9 with IC50 values of 33.79, 21.64 and 31.94 μm , and 45.47, 13.52 and 24.15 μm , respectively. The study provides some useful information for safe and effective use of DHI in clinical practice.  相似文献   

9.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A simple analytical method was developed to simultaneously determine thiamethoxam and its metabolite, clothianidin, in fresh tobacco leaf, soil and cured tobacco leaf using liquid chromatography with tandem mass spectrometry. Thiamethoxam and clothianidin in tobacco and soil samples were extracted with acetonitrile containing 0.1% formic acid and purified using an NH2‐SPE column. The optimized method provided good linearity with coefficients of determination R2 ≥ 0.9981. The limits of detection and quantification were between 0.006–0.12 and 0.02–0.4 mg/kg, respectively. Intra‐ and inter‐day recovery assays were used to validate the established method. The average recoveries of thiamethoxam and clothianidin in fresh tobacco leaf, soil and cured tobacco leaf were 75.04–100.47%, 75.86–86.40% and 89.83–99.39%, respectively. The intra‐ and inter‐day relative standard deviations were all <9%. The developed method was successfully applied for the analysis of thiamethoxam and clothianidin residues in actual tobacco and soil samples. The results indicated that the established method met the requirements for the analysis of trace amounts of thiamethoxam and clothianidin in fresh tobacco leaf, soil and cured tobacco leaf.  相似文献   

11.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

12.
13.
The mass spectrometric behavior of four pairs of stereoisomers was investigated by liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS). The E‐ and Z‐isomers of the pesticides chlorfenvinphos, dimethomorph, mevinphos and phosphamidon—each with one double bond—were chosen for this study. The MS response of the individual isomers was investigated by infusing the isomers individually into the MS or after the separation of isomer mixtures via high‐performance liquid chromatography(HPLC). In the case of dimethomorph, the same MS response was found for the two isomers. In contrast to that, the individual isomers of chlorfenvinphos, mevinphos and phosphamidon showed different MS response both in the single ion monitoring (SIM) mode in single quadrupole MS and multiple reaction monitoring (MRM) mode in tandem MS. The MS response of the isomers partly depends on (1) the declustering potential of the precursor ion in the SIM mode, (2) the selected transition and (3) the collision energy in the MRM mode. Consequently, quantification by summation of the peak areas of the isomers is inaccurate due to over‐ or underestimating of one of the stereoisomers. Accurate quantitative results can only be achieved when the compound‐specific MS parameters are separately determined for each isomer. This can be done by using pure isomers or by the determination of the MS parameters after HPLC separation and the measurement of the actual isomer ratio with an independent technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high‐throughput hydrophilic interaction UHPLC–MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one‐step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra‐day and inter‐day precisions were within 15.0% and the accuracy ranged from ?12.8 to 12.7%. The hydrophilic interaction UHPLC–MS/MS method was rapid, accurate and high‐throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.  相似文献   

15.
Amantadine plasma concentrations correlate well with desired therapeutic effects and adverse outcomes; information on amantadine exposure could be useful when multiple amantadine clearance pathways are impaired or non‐compliance is suspected. Micro‐sampling strategies, like dried plasma spot, would be particularly useful because ambulatory patients that do not attend a clinic can easily sample a few drops of blood by themselves at the required time of the dosing interval. We developed and validated a dried‐plasma‐spot‐based high performance liquid chromatography–tandem mass spectrometry assay to quantify amantadine. This assay met relevant validation requirements within a hematocrit range of 20–50% and was linear from 100 to 2000 ng/mL. Amantadine was stable in dried plasma spots for up to 21 days at room temperature, regardless of whether the dried plasma spot was protected from light or not. The correlation between paired dried and wet plasma concentrations was assessed in 52 patients. Deming regression coefficients between wet plasma and simultaneously pipetted dried plasma spots were used to predict plasma concentrations. Bland–Altman plots revealed a strong agreement between dried and wet plasma concentrations, supporting the clinical usefulness of dried plasma spots for amantadine monitoring with a self‐sampling strategy at a convenient time and place for the patient.  相似文献   

16.
Naphthoquine (NQ) is one of important partner drugs of artemisinin‐based combination therapy (ACT), which is recommended for the treatment of uncomplicated Plasmodium falciparum. NQ shows a high cure rate after a single oral administration. It is absorbed quickly (time to peak concentration 2–4 h) and has a long elimination half‐life (255 h). However, the metabolism of NQ has not been clarified. In this work, the metabolite profiling of NQ was studied in six liver microsomal incubates (human, cynomolgus monkey, beagle dog, mini pig, rat and CD1 mouse), seven recombinant CYP enzymes (1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and rat (plasma, urine, bile and feces) using liquid chromatography tandem high‐resolution LTQ‐Orbitrap mass spectrometry (HRMSn) in conjunction with online hydrogen/deuterium exchange. The biological samples were pretreated by protein precipitation and solid‐phase extraction. For data processing, multiple data‐mining tools were applied in tandem, i.e. background subtraction and followed by mass defect filter. NQ metabolites were characterized by accurate MS/MS fragmentation characteristics, the hydrogen/deuterium exchange data and cLogP simulation. As a result, five phase I metabolites (M1–M5) of NQ were characterized for the first time. Two metabolic pathways were involved: hydroxylation and N‐oxidation. This study demonstrates that LC‐HRMSn in combination with multiple data‐mining tools in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs.  相似文献   

17.
A rapid, sensitive and specific LC‐MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid‐liquid extraction (diethyl‐ether/hexane, 80/20, v/v) procedure. The LC‐MS/MS method on a RP‐C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5–50 ng/mL (R > 0.999). The between‐run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification—LLOQ (0.500 ng/mL). The between‐run accuracies were 0.1, –1.5, –2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam—test, Eurofarma Lab. Ltda and Olcadil®— reference, Novartis Biociências S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUC0‐inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to investigate the direct inhibitory effects of Re Du Ning Injection (RDN) and its active compounds on the major cytochrome P450 enzyme (CYP) isoforms (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) of human liver microsomes by ‘a cocktail method’. The activity of each CYP isform was represented as the formation rate of the specific metabolite from relevant substrate. Then a sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to simultaneously analyze the seven metabolites. RDN (0.035–2.26 mg/mL) showed a strong inhibitiory effect on CYP2C8, followed by CYP2C9, CYP2B6, CYP2C19, CYP1A2 and CYP3A4. The IC50 value for each enzyme was 0.19, 0.66, 0.72, 1.27, 1.66 and 2.13 mg/mL, respectively. RDN competitively inhibited the activities of CYP1A2 (K i = 1.22 mg/mL), CYP2B6 (K i = 0.65 mg/mL) and CYP3A4 (K i = 0.88 mg/mL); it also exhibited mixed inhibition of CYP2C8, CYP2C9 and CYP2C19 with a K i value of 0.26, 0.64 and 0.82 mg/mL, respectively. However, the activity of CYP2D6 was not significantly inhibited even by 2.26 mg/mL RDN. Moreover, the data of nine active compounds on the CYPs showed that cryptochlorogenin acid, sochlorogenic acid B and sochlorogenic acid C were the major contributors to the inhibitory effect of RDN on CYP2C8, while the inhibitory effect of RDN on CYP2C9 might be caused by sochlorogenic acid A and sochlorogenic acid C. Moreover, neochlorogenic acid might be the major contributor to the inhibitory effect on CYP2B6. All of the findings suggested that drug–drug interactions may occur and great caution should be taken when RDN is combined with drugs metabolized by these CYPs.  相似文献   

19.
A sensitive and rugged LC/MSMS method was developed for a comprehensive in vitro metabolic interaction screening assay with N-in-1 approach reported earlier. A cocktail consisting of ten cytochrome P450 (CYP)-selective probe substrates with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8) tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were simultaneously analysed with a single LC/MSMS run. Altogether, 13 metabolites and internal standard phenacetin were analysed in multiple reaction mode. Polarity switching mode was utilized to acquire negative ion mode electrospray data for hydroxychlorzoxazone and positive ionization data for the rest of the analytes. Fast gradient elution was applied, giving total injection cycle of 8 min. The method was modified for two different LC/MSMS systems, and was validated for linear range, detection limit, accuracy and precision for each metabolite. In addition, cocktail inhibition system was further tested using monoclonal anti-CYP antibodies as inhibitors for each probe reaction.  相似文献   

20.
Sphingosine kinase (SphK) is a key enzyme in modulating the levels of sphingosine 1‐phosphate (S1P) as well as an important enzyme in numerous biological responses. Using C17‐sphingosine as a substrate, we established a rapid, sensitive and highly efficient method for determination of SphK activity by analyzing the product C17‐sphingosine 1‐phosphate (C17‐S1P) using liquid chromatography–tandem mass spectrometry. The standard curve for C17‐S1P was linear over a wide range (10–1000 ng/mL) with correlation coefficient (r2) greater than 0.999. The lower limit of quantification for C17‐S1P was 10 ng/mL. The Km values for C17‐sphingosine and ATP were determined to be 28.17 and 188.5 mM, respectively. More importantly, the SphK activity dramatically increased in cultured HEK 293 cells expressing wild‐type SphK1 as well as cells treated with tumor necrosis factor‐a, a sphingosine kinase activator. In contrast, the SphK activity decreased in cultured HEK 293 cells treated with dimethylsphngosine, a sphingosine kinase inhibitor. In conclusion, this method was sensitive and rapid in the determination of SphK acitivity, providing striking utilities in exploring the sphingosine kinase signaling pathway and screening active compounds targeting SphK activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号