首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a fluorescence “turn-on” method to detect the critical micelle concentration (CMC) of surfactants. This method works well for both cationic and anionic surfactants. It employs an unprecedented mechanism (aggregation-induced emission, or AIE) to determine the CMC values, and the results are consistent with the data obtained by the classical techniques. In addition, this method renders the convenient detection of the CMC values. Any large and professional instruments are unnecessary, instead, a portable UV lamp and an ultrasonic generator are enough to carry out the detection in an ordinary laboratory. Considering that micelles are interesting entities and have found applications in many important fields such as emulsion polymerization, template of nanosized materials synthesis, controllable drug delivery and macromolecular self-assembling. Our experimental results may offer a facile, sensitive and promising method to detect the formation of micelles constructed by the new amphiphilic molecules and macromolecules. Supported by the National Natural Science Foundation of China (Grant Nos. 50573065 & 50873086) and the Natural Science Foundation of Zhejiang Province (Grant No. Z406018)  相似文献   

2.
Three functionalized derivatives of tetraphenylethylene (TPE), namely, 1,2-bis(4-methoxyphenyl)-1,2-diphenylethene (1), 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene (2), and 1,2-bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene sodium salt (3), were synthesized and their fluorescence properties were investigated. All the TPE molecules are nonluminescent in the solution state but are induced to emit efficiently by aggregate formation. This novel process of aggregation-induced emission (AIE) is rationalized to be caused by the restriction of intramolecular rotations of the dye molecules in the aggregate state. The possibility of utilizing the AIE effect for protein detection and quantification is explored using bovine serum albumin (BSA) as a model protein, with salt 3 being found to perform as a stable, sensitive, and selective bioprobe.  相似文献   

3.
The critical micelle concentration (CMC) can be obtained by measuring the distinct physical properties of surfactant molecules in the monomeric and micellar states. In this study, two linear increments of relative viscosity with distinct slopes were obtained when increasing surfactant concentrations from dilute solution to above the CMC, which was then determined by the intersection of the two linear extrapolations. Using a capillary electrophoresis (CE) instrument and Poiseuille’s law, the viscosities of surfactants at a series of concentrations covering the monomeric and micellar regions could be obtained by measuring the hydrodynamic flow rates of the corresponding surfactant solutions. We applied this method to determine the CMC values of various types of surfactants including anionic, cationic, zwitterionic, and nonionic surfactants. The resulting CMC values were all in good agreement with those reported in literature. Using this method, the multiple-stage micellization process of a short-chain surfactant was revealed. We have also demonstrated that the CE-based viscometer was applicable to the study of CMC variation caused by organic or electrolyte additives.  相似文献   

4.
Common cationic dyes used for laser and fluorescent probes present low solubility in water. In order to increase the dye concentration in aqueous solutions, anionic surfactant can be added. The strong interaction between anionic surfactant and cationic dye can affect drastically the dye absorption and fluorescence properties. Here we observed that the fluorescence of the species in aqueous solution is maximized at condition of complete micellization of surfactants at critical micelle concentration (CMC). In addition, combined measurements of absorption, emission and fluorescence lifetime provide fundamental information on the critical concentration of H-aggregates formation and monomer separation, induced by pre-micelles and homomicelles on different surfactant sodium dodecylsulphate (SDS) concentration. The experimental results show how to find precisely the critical concentration of H-aggregates by optical method in two different xanthene-derived molecules: rhodamine 6G and rhodamine B. The adequate transference of electron from excited dye to the conduction band of semiconductor (TiO2) promotes the creation of reactive species that provides the degradation of dye with advantage of use of irradiation in the visible region and strong photobleaching with direct exposure to the visible light irradiation in a scale of time of 10 min.  相似文献   

5.
A hypoxia-responsive fluorescence probe of amphiphilic PEGylated azobenzene caged tetraphenylethene (TPE) for tumor cell imaging is reported; it possesses excellent solubility in aqueous medium due to the easy formation of micelles by self-assembly. The fluorescence resonance energy transfer (FRET) process ensures that the fluorescence of the azobenene caged AIE fluorogen is quenched efficiently. When cultured with tumor cells, the azo-bond is reduced under hypoxia conditions and the fluorescence of AIE fluorogen recovers dramatically. Besides using UV light, NIR light can also be used as the excited light resource to generate the fluorescence due to the two-photon fluorescence imaging process.  相似文献   

6.
It has been difficult to decipher the mechanistic issue whether E/Z isomerization is involved in the aggregation-induced emission (AIE) process of a tetraphenylethene (TPE) derivative, due to the difficulty in the synthesis of its pure E and Z conformers. In this work, pure stereoisomers of a TPE derivative named 1,2-bis{4-[1-(6-phenoxyhexyl)-4-(1,2,3-triazol)yl]phenyl}-1,2-diphenylethene (BPHTATPE) are successfully synthesized. Both isomers show remarkable AIE effect (α(AIE) ≥ 322) and high fluorescence quantum yield in the solid state (Φ(F) 100%). The conformers readily undergo E/Z isomerization upon exposure to a powerful UV light and treatment at a high temperature (>200 °C). Such conformational change, however, is not observed under normal fluorescence spectrum measurement conditions, excluding the involvement of the E/Z isomerization in the AIE process of the TPE-based luminogen. The molecules of (E)-BPHTATPE self-organize into ordered one-dimensional nanostructures such as microfibers and nanorods that show obvious optical waveguide effect. BPHTATPE shows rich chromic effects, including mechano-, piezo-, thermo-, vapo-, and chronochromisms. Its emission peak is bathochromically shifted by simple grinding and pressurization and the spectral change is reversed by fuming with a polar solvent, heating at a high temperature, or storing at room temperature for some time. The multiple chromic processes are all associated with changes in the modes of molecular packing.  相似文献   

7.
Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE‐Cy, a cell‐permeable dye with aggregation‐induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE‐Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE‐Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.  相似文献   

8.
黄飞鹤 《高分子科学》2015,33(6):890-898
Based on the combination of B21C7/dialkylammonium salt host-guest interactions and tetraphenylethylene(TPE)-based aggregation-induced emission(AIE) effect, a fluorescent supramolecular crosslinked polymer gel was successfully prepared. Compared with the solution of TPE-containing small molecules, this gel exhibited remarkable fluorescence enhancement due to the AIE effect of TPE units. The "gelation induced fluorescence emission" phenomenon can be explained by the hindered intramolecular rotation of phenyl rings of TPE. Because of the reversibility and stimuli-responsiveness of the B21C7/dialkylammonium salt host-guest interactions, the transition between the fluorescent supramolecular crosslinked polymer gel and the disassembled sol with very weak fluorescence can be realized by adding p H and thermal stimuli. This novel material contributes to the development of supramolecular chemistry, polymer science and fluorescent materials and offers a new method to construct functional supramolecular materials.  相似文献   

9.
以聚丙烯酰胺(PAM)为大分子引发剂, 采用开环聚合方法, 在N,N-二甲基甲酰胺(DMF)中引发L-谷氨酸苄酯环内酸酐(BLG-NCA)聚合合成了两亲性聚丙烯酰胺/聚L-谷氨酸苄酯接枝共聚物(PAM-g-BLG), 采用IR, 1H NMR和GPC方法对共聚物结构进行了表征; 用芘作荧光探针, 研究了共聚物胶束的形成及其临界胶束浓度(cmc), 利用动态光散射(DLS)和透射电镜(TEM)研究了胶束的粒径分布和形态. 结果表明, PAM能够引发BLG-NCA开环聚合得到接枝共聚物, 在一定条件下接枝共聚物能够形成球形的稳定胶束, cmc值和胶束粒径随着共聚物中疏水性聚L-谷氨酸苄酯(PBLG)链段含量的增加而减小.  相似文献   

10.
We report an effective modulation of the quantum transport in molecular junctions consisting of aggregation‐induced‐emission(AIE)‐active molecules. Theoretical simulations based on combined density functional theory and rate‐equation method calculations show that the low‐bias conductance of the junction with a single tetraphenylethylene (TPE) molecule can be completely suppressed by strong electron–vibration couplings, that is, the Franck‐Condon blockade effect. It is mainly associated with the low‐energy vibration modes, which is also the origin of the fluorescence quenching of the AIE molecule in solution. We further found that the conductance of the junction can be lifted by restraining the internal motion of the TPE molecule by either methyl substitution on the phenyl group or by aggregation, a mechanism similar to the AIE process. The present work demonstrates the correlation between optical processes of molecules and quantum transport in their junction, and thus opens up a new avenue for the application of AIE‐type molecules in molecular electronics and functional devices.  相似文献   

11.
The effect of aminoacids (DL-glycine, DL-alanine, DL-serine, L-leucine, L-lysine, DL-phenylalanine, DL-tyrosine, and L-aspartic acid) on the critical micellization concentration (CMC) of nonionic, anionic, and cationic surfactants is investigated. It is established that, as the hydrophobicity of aminoacids rises, the CMC values of ionic and nonionic surfactants increase and decrease, respectively. An exception is aspartic acid, which reduces CMC values irrespective of the nature of surfactants.  相似文献   

12.
The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene)(E39B18) with anionic surfactant sodium dodecyl sulphate(SDS) and cationic surfactant hexadecyltrimethylammonium bromide(CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration(CMC) and thereby the free energy of micellization(△Gmic),free energy of adsorption(△Gads),surface excess concentration(Γ) and minimum area per molecule(A).Conductivity measurements were used to determine the critical micelle concentration(CMC),critical aggregation concentration(CAC),polymer saturation point(PSP),degree of ionization(α) and counter ion binding(β). Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks(I1/I3) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number(N),number of binding sites(n) and free energy of binding (△Gb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.  相似文献   

13.
A series of ethoxylated sodium monooctyl sulfosuccinates [E(n)SMOSS] and ethoxylated sodium monolauryl sulfosuccinates [E(n)SMLSS] have different units of ethylene oxide (n = 9, 14, 23) were synthesized. The surface and thermodynamic properties of these surfactants have been compared with sodium dioctyl sulfosuccinate surfactant (SDOSS) as a commonly used surfactant. The surface tension measurements at 25, 35, 45, and 55°C were used to determine of the critical micelle concentration (CMC) and surface active properties of these surfactants. The effect of the ethylene oxide (EO) unit and the alkyl chain length on the surface properties for the prepared surfactants was studied. The results show that the ethoxylated sodium monoalkyl sulfosuccinates generally have lower values of CMC than that of sodium dioctyl sulfosuccinate. The values of surface active parameters indicate that the ethoxylated sodium monooctyl sulfosuccinates and ethoxylated sodium monolauryl sulfosuccinates surfactants have adsorption properties better than the sodium dioctyl sulfosuccinate surfactant as a resulted presence of ethylene oxide in molecules of the prepared surfactants. The thermodynamic parameters show that the (EO) unites in the chemical structure of ethoxylated sodium monoalkyl sulfosuccinate surfactants improve their micellization and adsorption properties.  相似文献   

14.
The critical surface excess of micellization (CSEM) should be regarded as the critical condition for micellization of ionic surfactants instead of the critical micelle concentration (CMC). There is a correspondence between the surface excesses Γ of anionic, cationic, and zwitterionic surfactants at their CMCs, which would be the CSEM values, and the critical association distance for ionic pair association calculated using Bjerrum's correlation. Further support to this concept is given by an accurate method for the prediction of the relative binding of alkali cations onto dodecylsulfate (NaDS) micelles. This method uses a relative binding strength parameter calculated from the values of surface excess Γ at the CMC of the alkali dodecylsulfates. This links both the binding of a given cation onto micelles and the onset for micellization of its surfactant salt. The CSEM concept implies that micelles form at the air-water interface unless another surface with greater affinity for micelles exists. The process would start when surfactant monomers are close enough to each other for ionic pairing with counterions and the subsequent assembly of these pairs becomes unavoidable. This would explain why the surface excess Γ values of different surfactants are more similar than their CMCs: the latter are just the bulk phase concentrations in equilibrium with chemicals with different hydrophobicity. An intriguing implication is that CSEM values may be used to calculate the actual critical distances of ionic pair formation for different cations, replacing Bjerrum's estimates, which only discriminate by the magnitude of the charge.  相似文献   

15.
Aggregation-induced emission (AIE)-active nanoparticles (NPs) exhibiting multicolor fluorescence and high-quantum yields independent of the environment are important for the further development of next-generation smart fluorescent materials. In this work, AIE-active amphiphilic block copolymers were designed and synthesized by RAFT polymerization of a brominated tetraphenylethene (TPE)-containing acrylate (A-TPE-Br). The block copolymer exhibited typical AIE effects in selective solvents, which can be explained by hydrophobic TPE aggregated in the core during micelle formation. Luminescent core–shell NPs with a crosslinked AIE core (fixed structure) were synthesized by the Suzuki coupling reaction of the bromine groups of the assembled block copolymer and boronic acid compounds. The NPs composed of TPE/thiophene crosslinked core showed green emission in both diluted state and solid state, implying the ability to fluoresce regardless of environmental changes and molecular dispersion. Multicolor luminescent NPs capable of changing color from blue to red were synthesized by changing the coupling compounds, such as anthracene for electron-rich units and benzothiadiazole for electron-deficient units. The effects of the nature of the donor and acceptor, as well as their combination (TPE/donor/acceptor sequence), on the color and fluorescent intensity of the core crosslinked NPs in the nonpolar and polar solvents, and solid state, were investigated.  相似文献   

16.
A series of aggregation‐induced emission (AIE) fluorescent gelators (TPE‐Cn‐Chol) were synthesized by attaching tetraphenylethylene (TPE) to cholesterol through an alkyl chain. The properties of the gel, nano‐/microaggregate, and condensed phases were studied carefully. TPE‐Cn‐Chol molecules form AIE fluorescent gels in acetone and in DMF. Their fluorescence can be reversibly switched between the “on” and “off” states by a gel–sol phase transition upon thermal treatment. The AIE properties of aggregated nano‐/microstructures in acetone/water mixtures with different water fractions were studied by using fluorescence spectrometry and scanning electron microscopy (SEM). In different acetone/water mixtures, the TPE‐Cn‐Chol molecules formed different nano‐/microaggregates, such as rodlike crystallites and spherical nanoparticles that showed different fluorescence colors. Finally, the condensed phase behavior of TPE‐Cn‐Chol was studied by using polarizing microscopy (POM), differential scanning calorimetry (DSC), fluorescence spectrometry, fluorescence optical microscopy, and wide‐angle X ray scattering (WAXS). The clover‐shaped TPE unit introduced into the rodlike cholesterol mesogen inhibits not only the formation of a liquid‐crystal phase but also recrystallization upon cooling from the isotropic liquid phase. Very interestingly, TPE‐Cn‐Chol molecules in the condensed state change their fluorescence color under external stimuli, such as melting, grinding, and solvent fuming. The phase transition is the origin of these thermo‐, mechano‐, and vapochromic properties. These findings offer a simple and interesting platform for the creation of multistimuli‐responsive fluorescent sensors.  相似文献   

17.
Since the concept of aggregation-induced emission (AIE) was proposed by Benzhong Tang's research group in 2001, the exploration of the mechanism of AIE and the development of new high-performance AIE materials have been the focus and goal of this field. On the basis of a large number of experiment results, AIE mechanism has been well explained by lots of works, such as restricted intramolecular motion (RIM), J-aggregate et al. As tetraphenylethlene (TPE) molecules are stacked, the rotation of the benzene ring rotor is blocked, and the energy attenuation is released in the form of radiation, showing the AIE effect. In order to further explore the AIE effect of TPE, we performed electronic structure, spectrum simulation, and AIE mechanism calculations of the anthryl-tetraphenylethene (TPE-an) monomer and dimer in the gas phase, tetrahydrofuran (THF), and aqueous solutions at the B3LYP/6-31G** level. The calculation results show that TPE-an molecule is in a propeller-like configuration, and its fluorescence intensity is weak; compared with the monomer, the fluorescence intensity of the dimer increases by 87% in aqueous solution; the fluorescence intensity in the gas phase, THF solution, and aqueous solution gradually enhances with the increase of the degree of aggregation, which are consistent with the experimental results. The enhancement of fluorescence intensity is caused by the change of molecular structure caused by aggregation. This detailed AIE luminescence mechanism will provide theoretical guidance for AIE material design.  相似文献   

18.
The formation of micelles of Pluronic block copolymers in poly(ethylene glycol) (PEG) was studied using fluorescence, solubilization measurements, and frozen fracture electron microscopy (FFEM) methods at 40 degrees C. It was discovered that surfactants L44 (EO(10)PO(23)EO(10)), P85 (EO(26)PO(40)EO(26)), and P105 (EO(37)PO(56)EO(37)) can form micelles in PEG 200 (PEG with a nominal molecular weight of 200), and the critical micellization concentration (CMC) decreases with increasing molecular weight of the surfactants. The size of the micelles formed by these Pluronic block copolymers is in the range of 6-35 nm. The CMC values in PEG 200 are higher than those in aqueous solutions.  相似文献   

19.
Whereas most conventional DNA probes are flat disklike aromatic molecules, we explored the possibility of developing quadruplex sensors with nonplanar conformations, in particular, the propeller‐shaped tetraphenylethene (TPE) salts with aggregation‐induced emission (AIE) characteristics. 1,1,2,2‐Tetrakis[4‐(2‐triethylammonioethoxy)phenyl]ethene tetrabromide (TPE‐ 1 ) was found to show a specific affinity to a particular quadruplex structure formed by a human telomeric DNA strand in the presence of K+ ions, as indicated by the enhanced and bathochromically shifted emission of the AIE fluorogen. Steady‐state and time‐resolved spectral analyses revealed that the specific binding stems from a structural matching between the AIE fluorogen and the DNA strand in the folding process. Computational modeling suggests that the AIE molecule docks on the grooves of the quadruplex surface with the aid of electrostatic attraction. The binding preference of TPE‐ 1 enables it to serve as a bioprobe for direct monitoring of cation‐driven conformational transitions between the quadruplexes of various conformations, a job unachievable by the traditional G‐quadruplex biosensors. Methyl thiazolyl tetrazolium (MTT) assays reveal that TPE‐ 1 is cytocompatible, posing no toxicity to living cells.  相似文献   

20.
The micellization of the binary mixed surfactants comprising of the Gemini surfactant N,N′-bis(dimethyldodecyl)-1,2-ethanediammonium dibromide and 1-dodecyl-3-methylimidazolium bromide has been studied by measurements of density. The apparent molar volumes were calculated for various surfactant concentrations and used to determine the critical micelle concentrations of the mixed surfactants at various compositions. An attractive effect was suggested by negative deviations of the experimental CMC values from the ideal ones. The Margules equation was applied to evaluate the micelle compositions, the activity coefficients of both components, and the excess molar Gibbs free energies of the mixed micelles. The stability of mixed micelles was shown to be enhanced as compared to those formed by single surfactants from the negative values of the excess Gibbs free energy. The comparison of the results obtained from the volumetric and ITC measurements indicated a reasonable good accordance with each other and confirmed the reliability of both methods for investigation on the properties of the mixed micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号