首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gu  Zi-xu  Cheng  Jun  Zhang  Ming-zu  He  Jin-lin  Ni  Pei-hong 《高分子科学》2017,35(9):1061-1072
Due to the non-crystalline properties of short chain perfluoroalkyl groups,using short chain perfluoroalkyl to stabilize low surface free energy polymers has been a challenging task.In this study,we prepare a series of random copolymers poly(perfluorohexylethyl methacrylate)-co-poly(stearyl acrylate) (P13FMA-co-PSA) and block copolymers poly(perfluorohexylethyl methacrylate)-b-poly(stearyl acrylate) (P13FMA-b-PSA),and systematically investigate the effects of the sequence structure and the content of 13FMA of the fluorinated copolymers on surface free energy and surface reorganization.Static/dynamic contact angle goniometry and water/oil repellency analyses demonstrate that the random polymer P13FMA-co-PSA could not achieve low surface free energy and low surface reorganization at the same time.In contrast,for the block copolymer P13FMA-b-PSA,both low surface free energy and low surface reorganization are acquired simultaneously.The results of X-ray photoelectron spectroscopy (XPS),dynamic contact angle goniometry and differential scanning calorimetry (DSC) reveal the above-mentioned properties.The consecutive 13FMA segments improve the surface fluorine density,while the consecutive SA chains enhance the crystallinity of the SA segments,and further hinder the surface reorganization of the perfluoroalkyl groups.Therefore,P13FMA-b-PSA exhibits a higher utilization efficiency of fluorine atoms and a better structural stability than P13FMA-co-PSA.  相似文献   

2.
Langmuir monolayers and Langmuir–Blodgett (LB) film morphology of amphiphilic triblock copolymers are studied using surface pressure-area measurements and atomic force microscopy (AFM), respectively. The triblock copolymers are composed of long water-soluble poly(ethylene oxide) (PEO) chains as middle block with very short poly(perfluorohexylethyl methacrylate) (PFMA) end blocks. The surface pressure-area isotherms show phase transitions in the brush regime. This phase transition is due to a rearrangement of PFMA block at the air–water interface. It becomes more significant with increasing PFMA content in the copolymer. LB films transferred at low surface pressures from the air–water interface to hydrophilic silicon substrates show surface micelles in the size range of 50–100 nm. A typical crystalline morphology of the corresponding PEO homopolymer is observed in LB films of copolymers with very short PFMA blocks, transferred in the brush region at high surface pressure. This crystallization is hindered with increasing PFMA content in the copolymer.  相似文献   

3.
A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content of perfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.  相似文献   

4.
自交联型含氟丙烯酸酯共聚物的合成与表征   总被引:2,自引:0,他引:2  
含氟丙烯酸酯;自交联;无皂乳液;接触角滞后  相似文献   

5.
Statistical copolymers of perfluoroalkyl ethyl methacrylate (Zonyl-TM) and methylmethacrylate were synthesized in CO2-expanded monomer mixture at a low pressure of 10–13 MPa for the first time. M w of the copolymers was found to decrease with the increase of Zonyl-TM content. Flat films of these copolymers were obtained by dip coating from their chloroform solutions and were characterized using contact angle measurements, optical microscopy, and 3D profilometry. The increase in the Zonyl-TM content of the copolymers resulted in a decrease of the total surface free energy. Superhydrophobic and oleophobic rough copolymer films were also prepared by applying a phase-separation process where THF was used as the solvent and ethanol as the non-solvent. Surface roughness increased with the increase in the nonsolvent ratio resulting in an increase in the water contact angle from 103° to 151° and hexadecane contact angle from 49° to 73°.  相似文献   

6.
Hydrophobically associating polymers have been synthesized in supercritical carbon dioxide by copolymerization of acrylic acid with different amounts of acrylate with hydrocarbon or fluorocarbon groups. It was found that conversion of hydrocarbon comonomers was above 95% whereas that for fluorocarbon comonomers was only about 50%. In addition, large amounts of hydrophobic groups could be easily introduced to poly(acrylic acid) by reaction in supercritical carbon dioxide. The solution properties were investigated by rheology. The results indicated that intermolecular association of the copolymer was strong and viscosity was maximum under acidic conditions. In aqueous solutions fluorocarbon hydrophobes associated much more strongly than the hydrocarbon variety, but the viscosifying effect of PAAC-18 series copolymers in 2% (w/w) solution was more pronounced than that of the PAAF series, results which did not agree with the conclusions of Ravey and Stébé. It was also found that the thixotropy behavior of copolymer solution at pH 3.2 was more complex than that at pH 5.0, at which pseudoplasticity only was observed for solutions of all copolymers. Contact angles of copolymer solutions on a glass sheet were measured. The data indicated that contact angles of hydrocarbon-modified polymers were smaller than those of fluorocarbon analogues. As time passed the contact angle became smaller and smaller. Fluorocarbon analogues were better than hydrocarbon analogues, and longer hydrophobic chains were better than shorter chains, at maintaining the hydrophobic character of the surface.  相似文献   

7.
通过低能量功能端基的表面富集作用,研究了聚苯乙烯(PS)薄膜在聚甲基丙烯酸甲酯(PMMA)表面上的铺展和润湿动力学.用光学显微镜跟踪了PS薄膜的润湿行为,并对高分子熔体膜中非连续部分尺寸的增大速率进行了测定.分别用XPS和AFM对PS薄膜的表面组成和PS液滴的平衡接触角进行了测定.发现具有低表面能的氟碳端基在薄膜表面富集使PS薄膜的表面张力下降,并使PS液滴在PMMA表面上的平衡接触角减小,从而使高分子熔体膜中非连续部分尺寸的增长速率下降,得到了与液液界面铺展和润湿理论一致的实验结果.  相似文献   

8.
The surface free energy of diblock copolymer, composed of methyl methacrylate and 2-perfluorooctylethyl methacrylate (PMMA-b-PFEMA), was compared with that of PFEMA homopolymer (P-PFEMA) in correlation with their structures in the solid state and in the solution using dynamic contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, and dynamic light scattering. The PMMA-b-PFEMA film cast from chloroform solution was found to possess very low surface free energy (7.8 mJ/m(2)) compared with the surface free energies of the P-PFEMA (8.5 mJ/m(2)) and the PMMA-b-PFEMA (9.8 mJ/m(2)) films cast from CF(3)CF(2)CHCl(2) solutions. These differences in the surface free energy were brought about by the variations in their surface structures. The very low surface free energy was considered to have originated from the surface segregation of the PFEMA segments highly self-assembled by the presence of chloroform.  相似文献   

9.
A series of homopolymer/random copolymer blends was used to produce heterogeneous surfaces by demixing in thin films. The chosen homopolymer is polystyrene (PS) and the random copolymer is poly(methyl methacrylate)-r-poly(methacrylic acid) (PMMA-r-PMAA), whose acidic functions could be used as reactive sites in view of further surface functionalization. The proportion of each polymer at the interface was deduced from X-ray photoelectron spectroscopy (XPS) data using, on the one hand, the O/C ratio, and on the other hand, decomposition of the carbon peak of the blends in two components corresponding to the carbon peaks of PS and PMMA-r-PMAA. Combining the information from XPS with atomic force microscopy (AFM) images, water contact angle measurements and PS selective dissolution, it appears that the surfaces obtained from blends with a high PS content (90/10 to 70/30) display pits with a bottom made of PMMA-r-PMAA, randomly distributed in a PS matrix. On the other hand, the surfaces obtained from blends with a low PS content (30/70 to 10/90) display randomly distributed PS islands surrounded by a PMMA-r-PMAA matrix. The characteristics of the heterogeneous films are thought to be governed by the higher affinity of PMMA-r-PMAA for the solvent (dioxane), which leads to the elevation of the PS phase compared to the PMMA-r-PMAA phase, and to surface enrichment in PMMA-r-PMAA.  相似文献   

10.
Flat films of methyl methacrylate-fluoroalkyl methacrylate copolymers were prepared, and their hydrophobicity was investigated. It was revealed that the F concentration directly affects the static hydrophobicity on the flat polymer surface in a systematic manner. Furthermore, the sliding behavior of a water droplet on these surfaces depends on the static hydrophobicity; the sliding motion changes from constant velocity to constant acceleration with an increase in the water contact angle.  相似文献   

11.
A series of fluorinated diblock copolymers poly(2,2,3,4,4,4-hexafluorobutyl methacrylate)-b-poly(glycidyl methacrylate) PHFMA-b-PGMA with different fluorine content were synthesized by activator generated by electron transfer atom transfer radical polymerization (AGET ATRP). FTIR, 1H NMR and GPC data verified feasibility and controllability of the synthesis. In order to evaluate the effect of chain structure on the surface properties, corresponding homopolymer poly(2,2,3,4,4,4-hexafluorobutyl methacrylate) and random copolymer copoly(2,2,3,4,4,4-hexafluorobutyl methacrylate-r-glycidyl methacrylate) were also comparatively studied. Contact angle measurements indicated that the water and ethyleneglycol contact angles of block- and random copolymers increased with increase of fluorine content, but in different manner. This difference comes from different surface energy at the same fluorine content on film surface. The surface stability of block-copolymer was obviously better than that of random copolymer; the same results were observed in heat resistance tests.  相似文献   

12.
Present pharmaceutical research is focused on the development, modification and characterisation of new drug delivery systems. Among the many different substances, biodegradable polymers and copolymers are of practical importance, especially if their degradation byproducts are non-toxic. The polymeric drug carriers are not easily wettable by water or aqueous solutions, i.e. they are hydrophobic. This surface hydrophobicity is unfavourable for keeping drug carriers circulating in the blood long enough to release the drug so that it reaches its target. Therefore, copolymers with components of different hydrophobicity were introduced, to make them less hydrophobic and hence more suitable for drug delivery in the human body. Exploratory experiments with one homopolymer, , -poly(lactic acid), , -PLA and two of its copolymers, , -poly(lactic/glycolic acid), and , -PLGA with 85/15 and 50/50 copolymer ratios were carried out. Films of these substances were prepared by dip coating onto hydrophobic and hydrophilic substrates. The changes in wettability of the polymer layers, caused by the direct contact with an aqueous environment (soaking the samples in distilled water), have been studied to model the hydrolytic decomposition of polymer surfaces and to follow the changes in their wettability by dynamic contact angle measurements in a non-destructive manner. It was found that each polymer film became less hydrophobic (dynamic contact angles decreased) and more heterogeneous as the decomposition progressed with time. Increasingly significant decreases in contact angles were observed for the copolymer films containing 15 and 50% glycolic acid, during the 50–80-day-long study. These findings were supported by gel chromatographic analysis of the soaking liquids. It was concluded that the homopolymer layer of , -PLA was the most resistant to hydrolysis and the stability of copolymer films decreased with increasing glycolic acid ratio in the copolymers. This is accordance with the fact that the less crystalline poly(glycolic acid) is more hydrophilic and hence less resistant to hydrolytic decomposition, than the poly(lactic acid). The effect of pH on the rate of hydrolysis of polymer films was also established; the influence of pH on the decomposition was best demonstrated, again, for the copolymer with 50/50 component ratio. The outcome of these experiments showed that the contact angle measuring method enables us to detect, follow and interpret the hydrolytic decomposition of biopolymer substances in a non-invasive manner.  相似文献   

13.
We describe the synthesis of three novel thermoresponsive copolymers of acrylonitrile (AN) with N‐isopropylacrylamide (NIPAM) by a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). Linear copolymer polyacrylonitrile (PAN)‐b‐PNIPAM was directly prepared by RAFT polymerization. Comb‐like copolymers were synthesized by ATRP using brominated AN/2‐hydroxyethyl methacrylate copolymers as macroinitiators, which were prepared by RAFT polymerization. FT‐IR, NMR, and GPC were employed to characterize the synthesized copolymers. Results indicate that the polymerization processes can be well controlled and the resultant copolymers have well‐defined structures as well as narrow polydispersity. Then dense films were fabricated from these thermoresponsive copolymers and the surface wettability was evaluated by water contact angle measurements at different temperatures. It is found that the surface wettability is temperature‐dependant and both the transition temperature and decrement of water contact angle are affected by the copolymer shapes as well as the length of PNIPAM blocks. Considering the excellent fiber‐ and membrane‐forming properties of PAN‐based copolymers, the obtained thermoresponsive copolymers are latent materials for functional fibers and membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 92–102, 2009  相似文献   

14.
We present a one-pot synthesis for well-defined nanostructured polymeric microparticles formed from block copolymers that could easily be adapted to commercial scale. We have utilized reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare block copolymers in a dispersion polymerization in supercritical carbon dioxide, an efficient process which uses no additional solvents and hence is environmentally acceptable. We demonstrate that a wide range of monomer types, including methacrylates, acrylamides, and styrenics, can be utilized leading to block copolymer materials that are amphiphilic (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylacrylamide)) and/or mechanically diverse (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylaminoethylmethacrylate)). Interrogation of the internal structure of the microparticles reveals an array of nanoscale morphologies, including multilayered, curved cylindrical, and spherical domains. Surprisingly, control can also be exerted by changing the chemical nature of the constituent blocks and it is clear that selective CO(2) sorption must strongly influence the block copolymer phase behavior, resulting in kinetically trapped morphologies that are different from those conventionally observed for block copolymer thin films formed in absence of CO(2).  相似文献   

15.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

16.
Chitosan and its derivatives are promising materials for coating medical devices because this procedure improves their bio- and haemocompatibility. It is known that supercritical carbon dioxide attracts significant scientific interest in biomedical applications as well. Coatings deposited directly from solutions in supercritical carbon dioxide are expected to have particularly smooth and uniform morphology that should enhance their stability. We have tested the possibility of obtaining chitosan films using direct deposition from solutions in this fluid. In order to reveal benefits of this approach we modelled and studied the initial stage of formation of chitosan coatings with prototype system of depositing pioneer single polymer chains directly from such solutions on a model ultrasmooth mica substrate. We estimated achievable solubility of the chitosan materials in supercritical carbon dioxide and performed conformational analysis of the deposited chitosan chains on a substrate. AFM imaging directly demonstrated that the pioneer macromolecules adsorb as rather extended 2D coils from such solutions.  相似文献   

17.

A series of fluorine‐containing diblock copolymers based on lauryl methacrylate and 1H,1H,2H,2H‐perfluoroalkyl acrylate have been prepared by atom transfer radical polymerization (ATRP). The preparation process of PLMA‐Br macroinitiators was controlled within a reasonable time corresponding to the ln [M0]/[Mt]~time plot of the reaction. FTIR, 1H‐NMR, GPC and fluorine‐element analysis (FEA) were used to characterize the synthesized block copolymers. The solid surface activity of these polymers was demonstrated by contact angle measurement. The polymer films prepared by block copolymers with more than three fluorinated units showed low dispersion force contributions to the surface energy indicating the presence of the fluorinated block at the surface. The surface activity in solutions was measured by drop‐weight method. Ii is interesting to find, when the fluorine weight percentage is controlled constant, that PLMA‐b‐PFAEA with larger molecular size is more prominent in exploiting the fluorinated structure to reduce the surface tension of solutions. The block copolymer's ability in reducing surface tension of solutions also depends on the type of solvent.  相似文献   

18.
Coated hydroxyethyl methacrylate-sodium sulfoalkyl methacrylate copolymer films were surface characterized. The contact angle hysteresis increases and the receding angle decreases with increasing alkyl side-chain length, while the advancing angle decreases with hydration time. It was found that the buoyancy slopes of the advancing (ra) and receding (rr) process determined by the Wilhelmy plate method were not parallel. The ratio of ra to rr was greater than 1, and increases with the alkyl side-chain length and the hydration time, contrary to that of polyhydroxyethyl methacrylate, where ra/rr was less than 1. The slope ratio would be suppressed in solution with added salt, revealing that the reorientation and expansion of the polymer chain in water is being suppressed. X-ray photoelectron spectroscopy (XPS) analysis of the surface of these copolymers showed a striking enrichment of the sulfonate groups in the surface. The zeta potential was between −40 and −50 mV as measured by the streaming potential method. During dehydration, along with a decrease in sulfur and sodium concentration in the surface, the carbon 1s peak at the high binding energy decreased and the alkyl carbon main peak increased. The surface tension of aqueous solutions of sulfoalkyl methacrylate monomers and homopolymers decreases with increasing alkyl side-chain length, which may contribute to the decrease in water-polymer film interfacial tension and thus the increase in the slope ratio.  相似文献   

19.
The surface chemical modification of microcrystalline cellulose and cellulose fibers obtained from different sugar cane bagasse pulping processes, viz. Kraft, organosolv ethanol/water and organosolv/supercritical carbon dioxide, were studied in heterogeneous conditions using modest amounts of octadecanoyl and dodecanoyl chloride. The ensuing surfaces acquired a non-polar character, suitable for incorporating these fibers as reinforcing agents in composite materials based on polymeric matrices. The success of these chemical modifications was assessed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, elemental analysis, scanning electron microscopy (SEM) and contact angle measurements. In particular, the dynamic and equilibrium contact angle measurements, before and after the treatments, revealed that the value of the polar component (gamma(s)p) of the surface energy had decreased very considerably following the modification.  相似文献   

20.
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号