首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Combining the thermal processing and supercritical fluid technology develops a novel preparation method of microcellular poly(vinyl alcohol) (PVA). Water, as the plasticizer in system, can form the hydrogen bonding with pendant hydroxyl of PVA and weaken its strong intermolecular and intramolecular forces to realize the thermal processing. Supercritical carbon dioxide (sc‐CO2) can easily dissolve into water‐plasticized PVA (WPVA) because of the destruction of crystal region caused by water, and the enhanced sc‐CO2 solubility can greatly improve the foamability of WPVA. The porous structure generates through the saturation of sc‐CO2 in WPVA sample and followed by pressure drop‐induced phase separation. The foaming behavior of WPVA was studied as a function of saturation pressure, foaming temperature, and saturation time. The cell density, cell size, and distribution of the obtained foam can be controlled by tuning processing conditions. The results revealed that the cell size decreased, and its distribution narrowed with saturation pressure increasing, or decrease of foaming temperature. But excessively increasing the saturation time generated a negative effect on the foaming behavior owing to the deteriorated plasticization effect resulted from the loss of water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
微孔塑料是指泡孔尺寸为1~10μm、密度为109~1012 cell/cm3的发泡塑料,独特的结构使其具有质量轻、高冲击强度、低传导率、隔音和隔热效果好等优越性能,具有广泛的应用前景,被誉为"21世纪的新型材料".聚芳醚酮具有很高的热稳定性,优良的电性能及机械性能,广泛应用于航空、航天、电子和核能  相似文献   

3.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

4.
Thermogravimetric analysis and dynamic mechanical analysis were combined with scanning electron microscopy to analyze the thermo-mechanical properties and thermal stability of polylactic acid (PLA) foams fabricated using a solvent-free solid-state gas foaming method. The dependence of decomposition time and the lifetime on the PLA cell size was evaluated based on the thermal decomposition kinetic analyses. The results show that PLA specimens with larger cell sizes can be made at lower saturation gas pressures, which will ensure that the fabricated PLA foams have a shorter decomposition time, better flexibility, and are more satisfactory for medical requirements of tissue engineering scaffold (TES) material. The current work may help to optimize the PLA foaming parameters and precisely design PLA foams with different decomposition times according to specific TES requirements of different organ structures.  相似文献   

5.
张利 《高分子科学》2016,34(7):889-900
The open-cell structure foams of linear low-density polyethylene (LLDPE) and linear low-density polyethylene (LLDPE)/multi-wall carbon nanotubes (MWCNTs) composites are prepared by using supercritical carbon dioxide (sc-CO2) as a foaming agent. The effects of processing parameters (foaming temperature, saturation pressure, and depressurization rate) and the addition of MWCNTs on the evolution of cell opening are studied systematically. For LLDPE foaming, the foaming temperature and saturation pressure are two key factors for preparing open-cell foams. An increase in temperature and pressure promotes both the cell wall thinning and cell rupture, because a high temperature results in a decrease in the viscosity of the polymer, and a high pressure leads to a larger amount of cell nucleation. Moreover, for the given temperature and pressure, the high pressurization rate results in a high pressure gradient, favoring cell rupture. For LLDPE/MWCNTs foaming, the addition of MWCNTs not only promotes the cell heterogeneous nucleation, but also prevents the cell collapse during cell opening, which is critical to achieve the open-cell structures with small cell size and high cell density.  相似文献   

6.
新型PES微孔材料的制备及性能研究   总被引:1,自引:1,他引:0  
合成了新型双烯丙基聚醚砜(PES), 采用超临界CO2作为物理发泡试剂制备微孔材料, 研究了不同发泡温度、饱和压力、发泡时间和放气时间等因素对微孔形貌的影响. 结果表明, 发泡温度在110~170 ℃之间, 随着温度的升高, 泡孔直径增加, 泡孔密度在140 ℃达到一个最大值; 随着饱和压力的升高, 泡孔直径减小, 泡孔密度增大; 发泡时间和放气时间对微孔直径和密度影响不大; 研究了在不同辐照剂量下微孔材料的交联性能, 结果表明, 在600 kGy辐照剂量以下, 交联效果不明显, 在800 kGy以上, 随着辐照剂量的增大, 凝胶含量增加, 辐照后的样品在265 ℃热处理10 min, 仍能保持完好的微孔结构.  相似文献   

7.
应用超临界CO2制备微孔聚丙烯的微孔形貌   总被引:1,自引:0,他引:1  
研究了应用超临界CO2技术制备微孔聚丙烯时发泡条件和聚丙烯(PP)的熔体强度对微孔形貌的影响。结果表明:在一定的饱和压力下,随着温度的升高,PP的变形能力改善,有利于泡孔的长大。随着饱和压力的增加,PP的熔点降低,升高压力和升高温度具有一定的等同作用。由于CO2在PP内分散的不同,高压低温时得到的泡孔比高温低压时得到的泡孔要规整。降压速率对泡孔形貌的影响因饱和压力的大小而异,饱和压力较高时随着降压速率的提高,孔密度增加,泡孔形貌经历了一个从球体到多面体转变的过程。由于PP熔体强度较低,在发泡温度和PP熔点之间非常接近时,CO2气体容易冲破孔壁而使泡孔呈开孔结构。  相似文献   

8.
采用无溶剂二氧化碳固态发泡技术,在2.5、3.5、4.0和5.0 MPa饱和压力下制备了泡孔孔径为350-20μm的聚乳酸支架材料.利用热重分析技术、动态热机械分析技术和扫描电子显微镜技术,测定了材料的起始分解温度、分解速率、储存/损耗模量和损耗因子等参数,并利用Kissinger、Ozawa-Doyle和Vyazovkin方程进行了热分解动力学计算,推算了氮气环境下材料的降解时间和使用寿命.结果表明,随着发泡压力的减小,支架材料的泡孔孔径增大,材料的柔韧性增强,表观活化能降低,降解时间缩短.  相似文献   

9.
Polyvinylidene fluoride (PVDF) membranes were prepared via the phase inversion method from casting solutions containing PVDF, dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) as pore former. PVP was used in the casting solution in a range of 0–5 wt % and extracted. The effect on membranes of using PVP in the casting process was analyzed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, viscosity, and water permeability techniques. With an increase of PVP from 0 to 5 wt %, the PVDF casting solution viscosities increased from 858 to 1148 cP; the resulting PVDF membrane thickness increased; and the crystallinity of PVDF membranes decreased from 40.0 to 33.3%, which indicates that the addition of PVP inhibits the degree of crystallization in the PVDF membranes. SEM results revealed the shape and size of macropores in the membranes; these macropores changed after PVP addition to the casting solutions. The impact of structural changes on free-volume properties was evaluated using positron annihilation lifetime spectroscopy (PALS) studies. PALS analysis indicated no effect on the average radius (~3.4 Å) of membrane free-volume holes from the addition of PVP to the casting solution. However, the percentage of o-Ps pick-off annihilation intensity, I3, increased from 1.7 to 5.1% with increased PVP content. Further, increasing the PVP content from 0.5 to 5% resulted in an increased final pure water permeability flux. For instance, the 210 min flux for a 14% PVDF + 0.5% PVP membrane was found to be 3.3 times greater than a control membrane having the same PVDF concentration. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 589–598  相似文献   

10.
超临界CO_2发泡法制备PLGA多孔组织工程支架   总被引:1,自引:0,他引:1  
利用超临界CO2(SC-CO2)发泡法制备了一系列聚(乳酸-乙醇酸)共聚物(PLGA)多孔支架材料,研究了PLGA分子量和组成、发泡过程温度、压力以及泄压速率等对泡孔尺寸及形态的影响.结果表明,随着PLGA组成中乳酸含量的增加,泡孔平均孔径增大且连通性增强;提高过程压力易形成孔径小且泡孔密度大的微孔结构材料;降低泄压速率,泡孔易合并形成大孔.聚合物处于高弹态时,较低的发泡温度易导致特殊的多面体结构大孔的形成;而当温度较高时,泡孔塌缩形成球形微孔结构,且泡孔尺寸随着温度升高而增大.SC-CO2发泡法能有效地去除有机溶剂,避免在高温条件下操作,可以实现5~500μm范围内孔径可控的PLGA多孔支架材料的制备.  相似文献   

11.
In order to obtain cellular materials with low dielectric properties, crosslinked polyimide foams were prepared using 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), 4,4′‐oxydianiline (ODA) and 2,4,6‐triaminopyrimidine (TAP) as monomer via a poly(ester‐amine salt) precursor process. The structures of the precursors and the polyimide foams were characterized by thermogravimetric analysis (TGA) and FT‐IR, while the morphologies of the polyimide foams were viewed from scanning electron microscopy (SEM) measurements. The results revealed that the poly(ester‐amine salt) precursor containing TAP could successfully be converted to a crosslinked polyimide foam with relatively uniform cell structure. Also, the crosslinking of TAP improved the mechanical properties of foams in comparison with the non‐crosslinking systems. With increasing content of TAP, the dielectric constants of the polyimide foams decreased gradually. For the foam with TAP molar ratio at 15%, the dielectric constant was as low as 1.77 at the frequency of 10 kHz. Though the thermal resistance decreased slightly for crosslinked foams, the decomposition temperatures were still maintained above 520°C. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
High‐performance microcellular closed‐cell foams were prepared by a two‐stage batch foaming process from fluorinated poly(ether ether ketone) and characterized by scanning electronic microscopy, tensile, and dynamic mechanical analysis (DMA). The effects of saturation pressure and temperature on the cell size, cell density, and bulk density of porous materials had been discussed. The resulting materials had average cell diameters in the range 3–17 μm, and cell densities (Nf) in the order of 0.6 × 109–1.39 × 1010 cells/cm3. The porosity (Vf) was in the range of 0.2–0.85. In contrast, experimental values of Young's moduli were in good agreement with theoretically predicted values, but the relative strengths were somewhat lower than that predicted. The relaxation mechanism of microcellular was systematically investigated by DMA. The dynamic mechanical spectrometry showed that the storage modulus curve at high temperature region appeared a peak and the loss modulus was lower as compared to their solid counterparts. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 173–183, 2007  相似文献   

13.
Thermal measurements were carried out to investigate the macrostructure of as-cast poly(vinylidene fluoride) (PVDF)/poly(vinyl pyrrolidone) (PVP) blends. At high PVP content, above about 70 wt.%, the two components form a homogeneously mixed amorphous phase whose Tg varies with composition. Crystals are formed upon casting mixtures richer in PVDF; these systems exhibit complex thermal behavior that cannot be justified by a simple two-phase model. DSC measurements above room temperature on semicrystalline blends show, in addition to the melting of PVDF crystals at temperatures that decrease on increasing PVP content, a glass transition at about 80°C, independent of composition. Experimental results strongly support the hypothesis that an interphase, composed of essentially undiluted noncrystalline PVDF, is always associated with the lamellar crystals.  相似文献   

14.
The open-cell structure foams of linear low-density polyethylene(LLDPE) and linear low-density polyethylene(LLDPE)/multi-wall carbon nanotubes(MWCNTs) composites are prepared by using supercritical carbon dioxide(sc-CO_2)as a foaming agent. The effects of processing parameters(foaming temperature, saturation pressure, and depressurization rate) and the addition of MWCNTs on the evolution of cell opening are studied systematically. For LLDPE foaming, the foaming temperature and saturation pressure are two key factors for preparing open-cell foams. An increase in temperature and pressure promotes both the cell wall thinning and cell rupture, because a high temperature results in a decrease in the viscosity of the polymer, and a high pressure leads to a larger amount of cell nucleation. Moreover, for the given temperature and pressure, the high pressurization rate results in a high pressure gradient, favoring cell rupture. For LLDPE/MWCNTs foaming, the addition of MWCNTs not only promotes the cell heterogeneous nucleation, but also prevents the cell collapse during cell opening, which is critical to achieve the open-cell structures with small cell size and high cell density.  相似文献   

15.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

16.
Polyurethane rigid foams have been used for many applications such as pipelines insulation materials, automotive parts, solar water heater and construction materials[1,2], due to their desirable physical properties. Traditional rigid foam is made by the reaction of a polyol and 4,4′-diphenylmethane diisocyanate (MDI) with chlorofluorocarbons (CFCs), in particular tri- chlorofluoromethane (CFC-11) and/or HCFC-141b as blowing agents. However, the CFCs blowing agents contain halogens, whic…  相似文献   

17.
In order to meet the increasing demands on high performance foams with excellent dielectric property by modern industries, a new type of high performance foams based on diallyl bisphenol A modified bismaleimide (BDM/BA) resin is first developed in this paper. The effects of processing parameters such as prepolymerization time and temperature, foaming temperature and time as well as the content of blowing agent on the properties and morphology of resultant foams are intensively investigated from the view of processing–property–morphology relationship. Results show that compared with BDM/BA resin, the optimum condition of prepolymerization is 140°C for 60 min, and that of foaming is 160°C for 35 min. Foams based on BDM/BA resin with 9 wt% AC135 have uniform cell distribution, and greatly improved dielectric property. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Four polyimide (PI) foams were prepared from polyamide acid precursors. The effects of monomer structures on the foaming processes and thermal properties of PI foams were investigated. The foaming processes of PI foams were observed by a self‐made visualization device. The thermal properties of four PI foams were studied by the methods of dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetry/differential thermogravimetry (TG/DTG) analysis. The results indicated that the inflation onset temperatures and maximum inflation degrees of four precursors increased from 123 to 171°C and decreased from 28 to 15 times with the increasing rigidity of the precursor molecule, respectively. The glass transition temperatures, the 5% weight loss temperatures, the decomposed activation energies, and pre‐exponential factors of PI foams increased with increase in the rigidity of monomer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A novel and conventional closed cell polyisoprene rubber (IR) foams were produced by a single step limited‐expansion and two step unlimited‐expansion foaming process, respectively. The effect of 3 to 12 part per hundred rubber (phr) of azodicarbonamide (ADC) foaming agent on their structure and properties of developed novel foams were studied. In developed novel foams, the density was strangely independent of ADC content; however, the cell sizes conversely related to ADC content and it decreased by 60% (555‐330 μm) and the internal cell pressure build up from 1 to 3.7 atm, which was related to pressure‐free foaming method. The both reasons of compressed gas trapped inside cells and constant density not only caused unique enhancement in novel foams mechanical properties as hardness and modulus but also improved their dynamic properties as hysteresis and elasticity. Results of conventional IR foams showed that, their foam density as well as dynamic and mechanical properties sharply decreased with increasing ADC content from 3 to 12 phr. For clear expression, in samples with 12 phr of ADC, novel developed foams have more foam density (180%), more hardness (240%), more modulus (290%), and smaller cell size (75%) than conventional foams. Finally, novel developed foams were super‐elastic material with no hysteresis and no plastic deformation while conventional foams had 40% hysteresis and 10% plastic deformation under the same compression conditions.  相似文献   

20.
In this study, carbon dioxide was used as a foaming agent for common plastics, such as acrylonitrile–butadiene–styrene (ABS) polymer, polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and high impact polystyrene (HIPS). Carbon dioxide was first absorbed by the sample plastics placed within a pressure vessel at various pressure levels and absorption time intervals. The Henry’s constant of the absorbed carbon dioxide in the plastics was determined. The diffusion coefficient of carbon dioxide in polymer was also identified by curve-fitting with the relationship between the absorbed amount and time. The results showed that ABS, PS, and HIPS absorbed more gas than did PP and HDPE, because PP and HDPE exhibit higher crystallinity. Generally, a polymer can take up saturation absorption of gas under higher pressure. After absorption, the foaming process occurred at various temperatures and time intervals. The cell structure, density, and size of the plastic foams were then investigated using scanning electron microscopy. A longer foaming period and higher temperature increase the size of the cell and decrease the cell density (the number of bubbles per unit volume). A dense skin layer without bubbles appeared directly adjacent to the surface of the foamed plastics. Its thickness decreased if the foaming process took place at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号