首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cross-linked composite solid polymer electrolytes composed of poly(ethylene oxide), lithium salt (LiN(SO2CF3)2), and a hyperbranched polymer whose repeating units were connected by ether-linkage (hyperbranched polymer (HBP)-2) were prepared, and their ionic conductivity, thermal properties, electrochemical stability, mechanical property, and chemical stability were investigated in comparison with the non-cross-linked or cross-linked composite solid polymer electrolytes using hyperbranched polymers whose repeating units were connected by ester-linkage (HBP-1a, 1b). The cross-linked composite solid polymer electrolyte using HBP-2 exhibited higher ionic conductivity than the non-cross-linked and cross-linked composite solid polymer electrolytes using HBP-1a and HBP-1b, respectively. The structure of the hyperbranched polymer did not have a significant effect on the thermal properties and electrochemical stability of the composite solid polymer electrolytes. The tensile strength of the cross-linked composite solid polymer electrolyte using HBP-2 was lower than that of the cross-linked composite solid polymer electrolyte using HBP-1b, but higher than that of the non-cross-linked composite solid polymer electrolyte using HBP-1a. The HBP-2 with ether-linkage showed higher chemical stability against alkaline hydrolysis compared with HBP-1a with ester-linkage.  相似文献   

2.
Novel composite, gel-type polymer electrolytes have been prepared by dispersing selected ceramic powders into a matrix formed by a lithium salt solution contained in a poly(acrylonitrile) (PAN) network. The electrochemical characterization demonstrates that these new types of composite gel electrolytes have high ionic conductivity, wide electrochemical stability and, particularly, high chemical integrity (no liquid leakage) even at temperatures above ambient. These unique properties make the composite gel membranes particularly suitable as electrolyte separators in lithium ion polymer batteries.  相似文献   

3.
以单分散程度较高的SiO2纳米颗粒(约130 nm)作为填料,聚偏氟乙烯-六氟丙烯(PVDF-HFP)作为聚合物基质,采用简便的物理共混法制备出了一种单分散SiO2纳米颗粒复合凝胶聚合物电解质(MCGPEs)并将其应用于锂电池中。扫描电镜结果表明,SiO2纳米颗粒在聚合物基体中分散均匀。与传统凝胶聚合物电解质(GPEs)和商业SiO2颗粒复合凝胶电解质(CGPEs)相比,MCGPEs有着更高的电解液吸液能力和离子电导率,并且具备更强的锂离子迁移能力。此外,使用MCGPEs作为电解质的锂电池,在1.0C下历经300次循环后仍然保持了121.1 mAh·g-1的较高比容量,表现出了优异的循环性能。同时,其倍率性能也十分优异,在10C倍率下获得了135 mAh·g-1的比容量,远高于GPEs锂电池(76.2 mAh·g-1)。  相似文献   

4.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

5.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

6.
The borate ester plasticized AlPO4 composite solid polymer electrolytes (SPE) have been synthesized and studied as candidates for lithium polymer battery (LPB) application. The electrochemical and thermal properties of SPE were shown to be suitable for practical LPB. Nanostructured LiMn2O4 with spherical particles was synthesized via ultrasonic spray pyrolysis technique and has shown a superior performance to the one prepared via conventional methods as cathode for LPB. Furthermore, the AlPO4 addition to the polymer electrolyte has improved the polymer battery performance. Based on the AC impedance spectroscopy data, the performance improvement was suggested as being due to the cathode/polymer electrolyte interface stabilization in the presence of AlPO4. The Li/composite polymer electrolyte/nanostructured LiMn2O4 electrochemical cell showed stable cyclability during the various current density tests, and its performance was found to be quite acceptable for practical utilities at ambient temperature and showed remarkable improvements at 60 °C compared with the solid state reaction counterpart.  相似文献   

7.
复合型聚合物电解质的研究进展   总被引:6,自引:1,他引:5  
综述了通过物理改性的方法制成的复合型聚合物电解质(CPE)的研究进展,并介绍了CPE薄膜的制备工艺,以及CPE应用在聚合物二次锂电池中的最新成果。  相似文献   

8.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

9.
用水蒸气沉淀法制备了SiO2 偏氟乙烯 六氟丙烯共聚物 [P(VDF HFP) ]复合微孔型聚合物电解质 ,并研究了纳米SiO2 的加入对微孔结构及复合微孔型聚合物电解质性能的影响 .SEM观察发现当纳米SiO2 的添加量大于 0 1倍聚合物质量时 ,可以在微孔中观察到纳米粒子的严重团聚现象 .电导率的测量表明添加 0 0 5倍聚合物质量的纳米SiO2 后 ,微孔型聚合物电解质的电导率有明显提高 ,但进一步增大添加量后 ,电导率有所下降 .另外 ,实验发现添加纳米SiO2 可以明显提高微孔型聚合物电解质与锂金属电极之间的界面稳定性 ,特别是添加量为 0 0 5倍聚合物质量时的效果良好 .  相似文献   

10.
无机粒子-高分子复合固体电解质的研究进展   总被引:2,自引:0,他引:2  
综述了锂离子电池用无机粒子 高分子复合固体电解质方面的研究进展 ,对复合电解质的种类、无机复合粒子的作用和电解质在锂电池方面的应用情况进行了评述。  相似文献   

11.
《先进技术聚合物》2018,29(2):820-824
We prepared a ternary composite polymer electrolyte from poly(ethylene carbonate) (PEC), lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and non‐calcined silica nanofibers (SNFs) having 3 average diameters (300, 700, and 1000 nm). The SNF composite electrolytes were obtained as homogeneous, self‐standing membranes. The ionic conductivity of PEC/LiTFSI 100 mol% was increased by the addition of SNFs, and the thinner SNFs with average diameter 300 nm were most effective in improving the conductivity. The conductivity was of the order of 10−4 S/cm at 60°C. The lithium transference number of the SNF300 composite was greater than 0.7. Stress‐strain curves of the composites indicated significant increases in Young's modulus and maximum stress for the PEC electrolytes. The 5% weight‐loss temperature of the composites also improved with the addition of SNF.  相似文献   

12.
PEO/LiClO_4纳米SiO_2复合聚合物电解质的电化学研究   总被引:8,自引:0,他引:8  
将实验室制备的纳米二氧化硅和市售纳米二氧化硅粉末与PEO LiClO4复合 ,制得了复合PEO电解质 .它们的室温离子电导率可比未复合的PEO电解质提高 1~ 2个数量级 ,最高可以达到 1 2 4× 10 - 5S cm .离子电导率的提高有两方面的原因 :一是无机二氧化硅粉末的加入抑制了PEO的结晶 ,是二氧化硅粉末和聚合物电解质之间形成的界面对电导率的提高也有一定的作用 .在进一步加入PC EC(碳酸丙烯酯 碳酸乙烯酯 )混合增塑剂后制得的复合凝胶PEO电解质 ,可使室温离子电导率再提高 2个数量 ,达到 2× 10 - 3 S cm .用这种复合凝胶PEO电解质组装了Li|compositegelelectrolyte|Li半电池 ,并测量了该半电池的交流阻抗谱图随组装后保持时间的变化 ,实验观察到在保持时间为 144h以内钝化膜的交流阻抗迅速增大 ,但在随后的时间内逐渐趋于平稳 ,表明二氧化硅粉末的加入可以有效地抑制钝化膜的生长  相似文献   

13.
For enhancement of lithium-ion transference number, lithium-ion-conductive polymer electrolytes have been prepared from polyethylene oxide (PEO), lithium salt of LiCF3SO3 or LiF, plasticizer of polyethylene glycol dimethylether (PEGDME), and anion receptor of tris(pentafluorophenyl)borane (TPFB). Transport properties of the resultant polymer electrolytes have been studied by AC impedance spectroscopy. As a result, lithium-ion transference number increased with increasing TPFB due to the restriction of anion conduction by the interaction between anion and anion receptor. Effects of anion receptor on transport properties are discussed.  相似文献   

14.
Biodegradable corn starch–lithium perchlorate (LiClO4)-based solid polymer electrolytes with addition of nano-sized fumed silica (SiO2) were prepared by solution casting technique. Ionic conductivity at ambient temperature was measured by AC impedance spectroscopy. Upon addition of nano-sized SiO2, the ionic conductivity at room temperature is increased. The optimum ionic conductivity value obtained was 1.23?×?10?4?S?cm?1 at 4?wt% SiO2. This may be attributed to the low crystallinity of the polymer electrolytes resulting from the dispersed nanosilica particles. Fourier–transform infrared spectroscopy studies confirmed the complexation between corn starch, lithium perchlorate, and silica. The thermal properties of the prepared samples were investigated with differential scanning calorimetry and thermogravimetric analysis. The surface morphology of the polymer electrolytes confirmed the agglomeration of particles after excess dispersion of inorganic filler. This was proven in the scanning electron microscopy studies.  相似文献   

15.
Blend-based polymer electrolytes composed of poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl), and lithium salts have been prepared. These polymer electrolytes have been investigated in terms of ionic conductivity, transport number, and interfacial characteristics of the lithium electrode in contact with the polymer electrolyte. The influences of the blend composition, the salt used, and its concentration on the electrochemical behavior were studied. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Plasticized polymer electrolytes were prepared using poly(ethylene oxide)(PEO)/poly(vinylidene fluoridehexafluoro propylene)(PVd F-HFP) with lithium perchlorate(Li Cl O4) and different plasticizers. XRD and FTIR spectroscopic techniques were used to characterize the structure and the complexation of plasticizer with the host polymer matrix. The role of interaction between polymer hosts and plasticizer on conductivity is discussed using the results of alternating current(a.c.) impedance studies. TG-DTA and SEM were used for thermal and physical characterizations. Maximum ionic conductivity(3.26 × 10~(-4) S·cm~(-1)) has been observed for ethylene carbonate(EC)-based polymer electrolytes. Electrochemical performance of the plasticized polymer electrolyte is evaluated in LiFePO_4/plasticized polymer electrolytes(PPEs)/Li coin cell. Good performance with low capacity fading on charge discharge cycling is demonstrated.  相似文献   

17.
Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane(WPU)and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide(BMImTFSI)have been prepared and characterized.The addition of BMImTFSI results in an increase of the ionic conductivity.At high BMImTFSI concentration(BMImTFSI/WPU=3 in weight ratio),the ionic conductivity reaches 4.27×10~(-3)S/cm at 30℃.These composite polymer electrolytes exhibit good thermal and electrochemical stability,which are high enough to be...  相似文献   

18.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

19.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

20.
New kind of polymer host for lithium cations has been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of a polysiloxane and double bonds of vinyl tris-2-methoxyethoxy silane. The obtained macromolecule can be regarded as siloxane backbone grafted with silicon tripodand elements with very short polyether chains. A family of Li ion conducting polymer electrolyte membranes have been prepared by dissolving LiPF6 in thus obtained polymer matrix. Exceptionally high room temperature specific conductivities, exceeding 10−3 S/cm at 25 °C, have been measured for the studied polymer electrolytes. It is proposed that polyether chains tend to self-assembly in the presence of Li cations and this highly organized arrangement of Li coordination sites creates pathways of high lithium conductivity along the polysiloxane backbones. In addition to that, strong shielding of Li-cations suppresses the formation of ion pairs, thus increasing the charge carrier concentration. The electrolytes can be easily formed into dimensionally stable, flexible membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号