首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

2.
The gain in separation efficiency for protein digests using long monolithic columns has been evaluated for a LC‐MS system with capillary monolithic columns of different lengths (150 and 750 mm). A mixture of BSA, α‐casein and β‐casein tryptic digests was used as a test sample. Peak capacity and productivity (peak capacity per unit time) were determined from base peak chromatograms and MS/MS data were used for protein identification by MASCOT database searching. Peak capacity and protein identification scores were higher for the long column. Analyses with similar gradient slope for the two columns produced ratios of the peak capacities that were slightly higher than the expected value of the square root of the column length ratio. Peak capacity ratios varied from 2.7 to 4.0 for four different gradient slopes, while protein identification scores were 2–4 times higher for the long column. Similar values were obtained for the productivity of both columns and the highest productivity was obtained at gradient times of 45 and 75 min for the short and long column, respectively. The use of long monolithic columns improves peptide separation and increases reliability of protein identification for complex digests, especially if longer gradients are chosen.  相似文献   

3.
Jiang X  Dong J  Wang F  Feng S  Ye M  Zou H 《Electrophoresis》2008,29(8):1612-1618
An automated nano-LC-MS/MS platform without trap column was established, which only used a 20 cm lauryl methacrylate-ethylene dimethacrylate (LMA-EDMA) monolithic capillary column to allow preconcentration and separation of peptides. The monolithic column had the advantages of good permeability and low backpressure resulting in higher flow rates for capillary columns. Tryptic digests of bovine albumin and yeast protein extract were tested using the monolithic column system. High proteomic coverage using this approach were demonstrated in this study. Furthermore, peptide samples extracted from mouse liver were separated by using the monolithic column system combined with size-exclusion chromatography prefractionation. This monolithic column system might be a promising alternative for the automated system previously using a trap column for routine proteome and peptide profiling analysis.  相似文献   

4.
Optimisation of peak capacity is an important strategy in gradient liquid chromatography (LC). This can be achieved by using either long columns or columns packed with small particles. Monolithic columns allow the use of long columns at relatively low back-pressure. The gain in peak capacity using long columns was evaluated by the separation of a tryptic bovine serum albumin digest with an LC–UV–mass spectrometry (MS) system and monolithic columns of different length (150 and 750 mm). Peak capacities were determined from UV chromatograms and MS/MS data were used for Mascot database searching. Analyses with a similar gradient slope for the two columns produced ratios of the peak capacities that were close to the expected value of the square root of the column length ratio. Peak capacities of the short column were 12.6 and 25.0 with 3 and 15 min gradients, respectively, and 29.7 and 41.0 for the long column with 15 and 75 min gradients, respectively. Protein identification scores were also higher for the long column, 641 and 750 for the 3- and 15-min gradients with the short column and 1,376 and 993 for the 15- and 75-min gradients with the long column. Thus, the use of long monolithic columns provides improved peptide separation and increased reliability of protein identification.  相似文献   

5.
A comprehensive 2-D LC x LC system was developed for the separation of phenolic and flavone antioxidants, using a PEG-silica column in the first dimension and a C(18) column with porous-shell particles or a monolithic column in the second dimension. Combination of PEG and C18 or C8 stationary phase chemistries provide low selectivity correlations between the first dimension and the second dimension separation systems. This was evidenced by large differences in structural contributions to the retention by -COOH, -OH and other substituents on the basic phenol or flavone structure. Superficially porous columns with fused core particles or monolithic columns improve the resolution and speed of second dimension separation in comparison to a fully porous particle C(18) column. Increased peak capacity and high orthogonality in different 2-D setups was achieved by using gradients with matching profiles running in parallel in the two dimensions over the whole 2-D separation time range. Multi-dimensional set-up combining the LC x LC separation on-line with UV and multi-channel coulometric detection and off-line with MS/MS technique allowed positive peak identification. The Coularray software compensates for the effects of the baseline drift during the gradient elution and is compatible with parallel gradient comprehensive LC x LC technique. Furthermore, it provides significant improvement in the sensitivity and selectivity of detection in comparison to both UV and MS detection. The utility of these systems has been demonstrated in the analysis of beer samples.  相似文献   

6.
In this study, high-efficiency LC–MS/MS separations of complex proteolytic digests are demonstrated using 50 mm, 250 mm, and 1 m long poly(styrene-co-divinylbenzene) monolithic capillary columns. The chromatographic performance of the 50 and 250 mm monoliths was compared at the same gradient steepness for gradient durations between 5 and 150 min. The maximum peak capacity of 400 obtained with a 50 mm column, increased to 485 when using the 250 mm long column and scaling the gradient duration according column length. With a 5-fold increase in column length only a 20% increase in peak capacity was observed, which could be explained by the larger macropore size of the 250 mm long monolith. When taking into account the total analysis time, including the dwell time, gradient time and column equilibration time, the 50 mm long monolith yielded better peptide separations than the 250 mm long monolithic column for gradient times below 80 min (nc = 370). For more demanding separation the 250 mm long monolith provided the highest peak production rate and consequently higher sequence coverage. For the analysis of a proteolytic digest of Escherichia coli proteins a monolithic capillary column of 1 m in length was used, yielding a peak capacity of 1038 when applying a 600 min gradient.  相似文献   

7.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

8.
Liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS) has been used successfully for the characterization of biomolecules in proteomics in the last few years. This methodology relied largely on the use of reversed-phase chromatography, in particular C18-based resins, which are suitable for separation of peptides. Here we show that polymeric [polystyrene divinylbenzene] monolithic columns can be used to separate peptide mixtures faster and at a higher resolution. For 500 fmol bovine serum albumin, up to 68% sequence coverage and Mascot Mowse scores of >2000 were obtained using a 9 min gradient on a monolithic column coupled to an ion trap mass spectrometer with ultra-fast MS/MS scan rates. In order to achieve similar results using C18 columns, it was necessary to extend gradient times to 30 min. In addition, we demonstrate the utility of this approach for the analysis of whole Escherichia coli cell lysates by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) in combination with LC/MS/MS using 4 min gradients on monolithic columns. Our results indicate higher throughput capabilities of monolithic columns (3-fold gain in time or more) for conventional proteomics applications, such as protein identification and high sequence coverage usually required for detection of post-translational modifications (PTMs). Further optimization of sensitivity and quality of sequence information is discussed, in particular when combined with mass spectrometers that have very fast MS-MS/MS switching and scanning capabilities.  相似文献   

9.
In this study, 1-D and 2-D liquid chromatographic systems, namely, conventional HPLC, UPLC, HPLC x HPLC and HPLC x UPLC systems were developed and evaluated for the separation of phenolic acids in wine and juices. In the LC x LC studies, the first dimension separation was based on RPLC and the second dimension was performed with ion-pair chromatography. Three different columns, namely two short columns packed with either 2.5 or 1.7 microm particles and a monolithic column, were tested for the fast second dimension separation. The best results were obtained when the monolithic column was applied for the second dimension separation. The peak capacities for comprehensive 2-D systems varied from 330 to 616.  相似文献   

10.
A butyl–silica hybrid monolithic column for bioseparation by capillary liquid chromatography (cLC) was prepared with butyl methacrylate and alkoxysilanes through a “one-pot” process. The effects of polycondensation temperature, volume percentage of N,N′-dimethylformamide, and content of cetyltrimethylammonium bromide and butyl methacrylate on the morphologies of the hybrid monolithic columns prepared were investigated in detail. Baseline separations of proteins and small peptides on the hybrid monolithic column were achieved by cLC with gradient elution. In addition, the resulting hybrid column was also applied for analysis of tryptic digests of bovine serum albumin by cLC coupled with tandem mass spectrometry. The results demonstrate its potential application in separation of complex biological samples.  相似文献   

11.
Bioactive peptides and tryptic digests of various proteins were separated under acidic and alkaline conditions by ion-pair-reversed-phase high-performance liquid chromatography (RP-HPIPC) in 200 microm I.D. monolithic, poly(styrene-divinylbenzene)-based capillary columns using gradients of acetonitrile in 0.050% aqueous trifluoroacetic acid, pH 2.1, or 1.0% triethylamine-acetic acid, pH 10.6. Chromatographic performances with mobile phases of low and high-pH were practically equivalent and facilitated the separation of more than 50 tryptic peptides of bovine serum albumin within 15-20 min with peak widths at half height between 4 and 10 s. Neither a significant change in retentivity nor efficiency of the monolithic column was observed during 17-day operation at pH 10.6 and 50 degrees C. Upon separation by RP-HPIPC at high-pH, peptide detectabilities in full-scan negative-ion electrospray ionization mass spectrometry (negESI-MS) were about two to three times lower as compared to RP-HPIPC at low-pH with posESI-MS detection. Tandem mass spectra obtained by fragmentation of deprotonated peptide ions in negative ion mode yielded interpretable sequence information only in a few cases of relatively short peptides. However, in order to obtain sequence information for peptides separated with alkaline mobile phases, tandem mass spectrometry (MS/MS) could be performed in positive ion mode. The chromatographic selectivities were significantly different in separations performed with acidic and alkaline eluents, which facilitated the fractionation of a complex peptide mixture obtained by the tryptic digestion of 10 proteins utilizing off-line, two-dimensional RP-HPIPC at high pH x RP-HPIPC at low pH and subsequent on-line identification by posESI-MS/MS.  相似文献   

12.
In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations.  相似文献   

13.
The separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent. The combination of high-resolution chromatography with high-accuracy MS allowed to distinguish protein isoforms that differ only in their oxidation and biotinylation state allowing the separation between structural isoforms. Finally, the potential to separate proteins isoforms due to glycosylation is discussed.  相似文献   

14.
In this study, the performance of monolithic columns was evaluated for ultrafast liquid chromatography/mass spectrometry (LC/MS) analyses and for high-resolution separations of several azaspiracid biotoxin analogs. Because of their high permeability, monolithic columns offer a number of advantages over conventional packed columns; viz., very low backpressures and relatively flat van Deemter curves at high flow rates. That is, very high flow rates can be used for ultrafast analyses or, by using longer than normal columns, high-resolution separations are possible. In a series of experiments, we varied the mobile phase flow rates between 1 and 8 mL/min, and studied their impact on chromatographic parameters such as retention time, resolution, number of plates and pressure. The chromatographic run times could be reduced to ca. 30 s without a significant change in the separation efficiency. A signal intensity comparison revealed interesting differences between atmospheric-pressure chemical ionization (APCI) and electrospray ionization (ESI) in their flow-rate dependency. An explanation with respect to the behavior as of a mass-flow or a concentration-dependent device is given in the paper. Additionally, the column length was varied between 10 and 70 cm. As a result, the number of theoretical plates increased substantially. In the example shown in the report, an increase from 13 000 plates for a 10-cm column to 80 000 for a 70-cm column is demonstrated. In addition, the potential of the monolithic columns for high-resolution LC/MS separations is shown for a complex biotoxin mixture, which was separated on a 40-cm-long column.  相似文献   

15.
The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.  相似文献   

16.
Tandem mass spectrometry coupled to HPLC is the state of the art technique in proteomic research. Here we describe a highly sensitive nano liquid chromatography system (nano HPLC) for analysis of protein digests. Using preconcentration in a column-switching set-up, we were able to inject large sample volumes (250 µL) without significant loss of sensitivity. The major problem with this type of preconcentration is usually the occurrence of void volumes. In order to diagnose void volumes a simple and easy test was developed by which the UV trace and the pressure profile in the separation column were monitored. Part by part replacement of connection tubing restored a void volume-free system. A major pre-requisite for handling samples in the femtomol range was found to be the use of protein/peptide-saturated columns tryptic digests of cytochrome C were injected directly onto the reversed-phase nano separation column (75 µm inner diameter) and the separation results were compared with chromatograms obtained from separations using column switching. By using column switching we were able to inject large sample volumes in a short time period without losing resolution.  相似文献   

17.
A prototype array of monolithic liquid chromatography (LC) columns was prepared in a plastic microfluidic device for the off-line interface with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The microfluidic channels were fabricated on a cyclic olefin copolymer (COC) plate by hot embossing. An array of methacrylate monolithic columns was prepared in the microfluidic channels by UV-initiated polymerization. The deposition system employed a pulsed electric field to transfer the effluents from multiple columns directly onto MALDI targets with a non-contact deposition method reported by Ericson et al. [C. Ericson, Q.T. Phung, D.M. Horn, E.C. Peters, J.R. Fitchett, S.B. Ficarro, A.R. Salmon, L.M. Brill, A. Brock, Anal. Chem. 75 (2003) 2309]. To characterize the off-line interface of the multiple-channel microchip LC and the MALDI-MS for the analysis of peptide mixtures, the separation efficiency and reproducibility tests in each column were carried out by separating a peptide mixture from tryptic digested proteins and depositing the multiple effluents simultaneously on the MALDI target plate. Using a MALDI-TOF mass spectrometer with a mass accuracy of +/-1 Da for peptide assignments of digested bovine serum albumin (BSA), amino acid sequence coverage of around 59% was obtained for the microchip LC-MALDI-MS compared to 23% obtained by the MALDI-MS method without LC separation. In sensitivity tests for the detection of low abundance proteins in the presence of high concentration protein mixtures, as low as 10 fmol/mul (S/N = 10) of a spiked peptide in 1 microg of digested BSA could be detected. In the analysis of a mixture of three digested proteins (BSA, myoglobin, and cytochrome c), more than twice the amino acid sequence coverage was obtained for the microchip LC-MALDI-MS compared to MALDI-MS alone.  相似文献   

18.
The enormous interest in proteomics research in recent years has inspired many developments in peptide chromatography. Different strategies have been developed to cope with the vast complexity of proteomics samples, trying to provide sufficient degree of separation to be able to exploit fully the potential of protein identification by mass spectrometry (MS). As reversed-phase liquid chromatography (RPLC) coupled to MS is still the method of choice for the analysis of protein digests, many efforts focus on the development of high-efficiency RP methods (e.g., monolithic columns and ultra-high-performance LC). This can also increase the speed and the sensitivity of the analysis of protein digests.As RPLC-MS alone is unlikely to provide sufficient resolution to unravel the composition of highly complex samples comprehensively, multidimensional methods will remain essential in proteome research. In this area, hydrophilic interaction chromatography (HILIC) seems to be a promising alternative to the traditional strong cation-exchange-based methods. Also, HILIC has found application in the analysis of post-translational modifications (e.g., phosphorylation and glycosylation).This review describes recent developments in LC methods for proteomics research, focusing on advances in column technology and the application of novel column materials. Illustrative examples show the possibilities of the new columns in proteomics research.  相似文献   

19.
A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 microg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis.  相似文献   

20.
反相毛细管整体柱的制备及其在多肽混合物分离中的应用   总被引:3,自引:3,他引:0  
谢晶鑫  毕开顺  钱小红  张养军 《色谱》2009,27(2):186-190
采用甲基丙烯酸月桂酯为基础功能单体,乙二醇二甲基丙烯酸酯为交联剂,正十二醇、1,4-丁二醇及二甲基亚砜为致孔剂,在内径为75 μm的石英毛细管内制备了具有良好机械性能及化学稳定性的反相毛细管整体柱。考察了致孔剂的种类、比例以及交联剂在单体混合物中的比例对柱压和分离效果的影响;以单体15%、交联剂15%、致孔剂70%(均为质量分数)作为优化配方,在70 ℃条件下反应24 h;并对所合成的毛细管整体柱进行了电镜表征,测试了流速、柱长与柱压的关系。结果表明,毛细管整体柱的通透性良好,可通过延长柱长的方法提高分离效果。将所制备的毛细管整体柱装于纳升级高效液相色谱仪上进行牛血清白蛋白及血浆样本的胰蛋白酶酶切液的分离,获得了比较理想的分离效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号