共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas Raubold Stefanie Freitag Regine Herbst-Irmer Herbert W. Roesky 《无机化学与普通化学杂志》1993,619(5):951-953
Synthesis and Crystal Structure of the Spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 The reaction of (i-Pr)2P(S)N(SiMe3)2 ( 1 ) with SnCl4 in 2:1 ratio yields under elimination of ClSiMe3 the four-membered spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 ( 2 ). The molecular structure of 2 was investigated by an X-ray structure analysis. Compound 2 crystallises in the monoclinic space group P21, Z = 2, a = 938.1(1), b = 1 424.1(2), c = 1 207.2(1) pm, β = 110.59(1)°, R = 2.05% for 4 102 reflexions. Compound 2 is a spirocycle with two Sn? N? P? S-rings joined at tin. The two rings are in cis-position. 相似文献
2.
Reactions of tBu(Me3Si)P? P(Li)? P(tBu)2 with CH3Cl and 1,2-Dibromoethane tBu(Me3Si)P? P(Li)? P(tBu)2 · 0.95 THF 1 with CH3Cl (?70°C) yields tBu(Me3Si)P? P = P(Me)(tBu)2 2 at ?70°C, with 1,2-Dibromoethane tBu(Me3Si)P? PBr? P(tBu)2 3 (main product) and tBu(Me3Si)P? P?P(Br)tBu2 4. 3 eliminates Me3SiBr yielding the cyclotetraphosphane {tBuP? P[P(tBu)2]}2 5 . 相似文献
3.
4.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry. 相似文献
5.
Nitrido-Sodalithe. III [1]. Synthese,Struktur und Eigenschaften von Zn8[P12N24]X2 mit X = O,S, Se,Te
Nitrido-Sodalites. III. Synthesis, Crystal Structure, and Properties of Zn8[P12N24]X2 with X = O, S, Se, Te The P? N-sodalites Zn8[P12N24]X2 with X = O, S, Se, Te are obtained by the reaction of HPN2 with the corresponding zinc chalcogenide ZnX at 750°C. They crystallize in a filled up variant of Zn7[P12N24]Cl2 and are isotypic to Zn8[B12O24]O2 (I4 3m, a = 823 to 830 pm, Z = 1). The P? N-sodalites contain in the center of their β-cages XZn46+ units which can be described as sections of II/VI-semiconductors. The UV/Vis-spectra of the compounds show in comparison with binary bulk zinc chalcogenides a blue shift of the absorption edge according to the size quantization effect. 相似文献
6.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster. 相似文献
7.
Lithium Bis(silyl)amides and Tris(silyl)amines Synthesis and Crystal Structures Lithiated di-tert-butylfluorosilylamine reacts with difluorosilanes by substitution ( 1, 2 ). The siloxy-( 3, 4 ) and tert-butyloxy-( 5 )-silylamines are formed in reaction of 1 and 2 with LiOR (R = SiMe3, CMe3). The lithium derivatives of 3 and 4 are dimers forming an (LiFSiN)2-eight-membered ring ( 6, 7a ). Using 12 crown-4 the amide and the coordinated lithium are forming free ions ( 7 c ). The lithium derivative of 5 ( 8 ) crystallizes as a dimeric LiF-adduct of an iminosilane, forming a LiF-four-membered ring. In thf 7 reacts with Me3SiCl by a fluorine/chlorine exchange and 9 is obtained. In 9 lithium is coordinated with nitrogen, oxygen and two thf molecules, forming an (SiNOLi)-four-membered ring. 6 and 7 react with fluorosilanes to give tris(silyl)amines 10 – 12 . 相似文献
8.
9.
Synthesis and Molecular Structure of (N,N′-Dimethyl-piperazine)lithium-(·-hydrido)(tert-butyl)bis[bis(trimethylsilyl)methyl]alanate with an Intramolecular Interaction between Lithium and C? H-σ-Bonds Syntheses and properties of the starting compounds bis[bromo-di(tert-butyl)alane] 3 , bis[dibromo-tert-butyl-alane] 4 , and (tert-butyl)bis[bis(trimethylsilyl)methyl]alane 5 are described. In the presence of 5 and the chelating amine N,N′-dimethylpiperazine lithium tert-butyl gives via μ-elimination isobutene and LiH, which is taken up by the starting alane 5 to give the title compound 6 . No attack of the strong base (lithium alkyl/amine) to the bis(trimethylsilyl) methyl substituent is observed as recently occured for the sterically more crowded tris[bis(trimethylsilyl)methyl]alane. Crystal structure of 6 shows a angled Li? H? Al bridge and a short intramolecular contact between Li and C? H-σ-bonds of a trimethylsilyl group. 相似文献
10.
Formation and Reaction of the Phosphanylidene-phosphorane (tBu)2P? P = PX(tBu)2 (X = Br, Cl) The formation of (tBu)2P? P = P(Br)tBu2 1 from [(tBu)2P]2PLi and BrH2C? CH2Br begins with an exchange of Li against Br and is then determined by the migration of Br from the secondary P atom in [(tBu)2P]2PBr 6 to the primary P in 1 . Similarly, (tBu)2P? P = PC1(tBu)2 2 is obtained starting from PCl3 and LiP(tBu)2. The formation of Phospanylidene—phosporane is not influenced by the choice o the halogene substituent, but the presence of the tBu groups is strongly required. (tBu)2P? P(Li)? P(SiMe3)2 e. g., yields (tBu)2P? P(br)? P(SiMe3)2 with BrH2C? CH2Br; however neither this nor (tBu)2P? P(Cl)? P(SiMe3)2 do rearrange to a Phosphanylidene-phosphorane. The F3C substituent could be neglected in this investigation as [(F3C)2P]2P? SiMe3 cannot be lithiated by means of BuLi. Compounds 1 and 2 display a charateristic temperature dependent behavior. While 1 at +20°C decomposes via the reactive intermediate (tBu)2P? P to from the cyclophosphanes P3[P(tBu)2]4, it gives crystals of [(tBu)2P]2P? p[P(tBu)2]2 at ?20°C (from a solution in toluene). Reacting 1 with tBuLi produces (tBu)2P? P = P(H)tBu2 20 and (tBu)2P? P(H)? P(tBu)2 14 . Initially, a transmetallation yield tBuBr and (tBu)2 P? P=Pli(tBu)2 21 ,then LiBr and isobutene are eliminated and 20 is formed which can rearrange to produce 14 . Without the elimination of isobutene, 1 react with nBuLi to give 21 witch can be trapped with Me3SiCl as (tBu)2P? P(tBu)2 23 . The main product in in this reaction is however [(tBu)2P]2P? nBu 22 . 相似文献
11.
I. Kovacs V. Balema A. Bassowa E. Matern E. Sattler G. Fritz H. Borrmann R. Bauernschmitt R. Ahlrichs 《无机化学与普通化学杂志》1994,620(12):2033-2040
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2. 相似文献
12.
tBu2P? P?P(X)tBu2 Ylides (X = Cl, Br, I) by Halogenation of [tBu2P]2P? SiMe3 [tBu2P]2P? SiMe3 1 with halogenating agents as Br2, I2, Br-succinimide, CCl4, CBr4, CI4 or C2Cl6 via cleavage of the Si? P bond in 1 produces the ylides tBu2P? P?P(X)tBu2 (X = Cl, Br, I). This proceeds independent from the formerly known pathway – [tBu2P]2PLi + 1,2-dibromoethane – and shows that the Li-phosphide must not be present as a necessary requirement for the formation of ylides. 相似文献
13.
Preparation of Dithiatetrazocine and Secondary Reactions Li[PhCN2(SiMe3)2] ( 1 ) or PhCN2(SiMe3)3 ( 3 ) react with SCl2 to give in good yields the dithiatetrazocine PhC(NSN)2CPh ( 2 ). By analogy, p-MeC6H4C(NSN)2CC6H4Me-p ( 7 ), p-NO2C6H4C(NSN)2-CC6H4NO2-p ( 8 ), and p-CF3C6H4C(NSN)2CC6H4CF3-p ( 9 ) are obtained from the reaction of p-MeC6H4CN2(SiMe3)3 ( 4 ), Li[p-NO2-C6H4CN2(SiMe3)2] ( 5 ), und Li[p-CF3C6H4CN2(SiMe3)2] ( 6 ) with SCl2. Reaction of 2 /LiCl with AgAsF6 in liquid SO2 leads to [PhCN2S2]+[AsF6]− ( 10 ) and 3[PhCN2S2]+2[AsF6]−Cl− ( 11 ). The structures of 10 and 11 are confirmed by X-ray analyses. 相似文献
14.
Synthesis and Molecular Structure of Two 1-Sila-3-alanata-cyclobutane Derivatives with Four-membered AlC2Si-Heterocycles The C? H acidic bis(trimethylsilyl)methyl compounds Me3C? AlR2 und Me3C? CH2? AlR2 (R ? CH(SiMe3)2) are deprotonated by treatment with the sterically high shielded base LiCH(SiMe3)2 in the presence of 1,3,5-trimethylhexahydrotriazinane. The deprotonation occurs at a methyl group of one of the element-organic substituents, and the formed carbanions are stabilized by coordination to the unsaturated Al atoms yielding four-membered heterocycles. Both products were characterized by a crystal structure determination each showing bent ring systems. 相似文献
15.
Martin GE Hilton BD Irish PA Blinov KA Williams AJ 《Magnetic resonance in chemistry : MRC》2007,45(10):883-888
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. 相似文献
16.
Thermolysis of Sterically Stressed Alanates; Synthesis of Two New 1-Sila-3-alanata-cyclobutane Derivatives with Four-membered AlC2Si-Heterocycles The reaction of high shielded alkyl or aryl alanes with LiCH(SiMe3)2 in the presence of the chelating N,N′,N″-trimethyl-triazinane yields the sterically stressed alanates [(Me3C)2Al{CH(SiMe3)2}2]? 12 and [R? Al{CH(SiMe3)2}3]? (R = Me3SiCH2 13 , Et 14 , Me 15 , C6H5 16 ) each with a Li(triazinane)2 counter ion. On thermolysis of the sterically most shielded derivatives 12 and 13 at 130 to 150°C one equivalent of bis(trimethylsilyl)methane is liberated, and by deprotonation of methyl groups carbanionic species are formed, which are stabilized by intramolecular coordination to the unsaturated aluminium atoms under formation of AlC2Si heterocycles ( 19 and 20 ). 20 was characterized by a single crystal structure determination. The remaining alanates give under similar conditions either under dismutation the recently published heterocycle 1 with two intact CH(SiMe3)2 groups ( 14 and 15 ) or a methyl alanate by the replacement of a elementorganic substituent ( 16 ). 相似文献
17.
18.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry. 相似文献
19.
Romina Abarca Grace Gomez Carla Velasquez Maritza A. Paez Miguel Gulppi Abel Arrieta Manuel I. Azocar 《中国化学》2012,30(7):1631-1635
FT‐IR spectroscopy of carboxylic groups and viability tests were useful to understand the antibacterial properties of six highly efficient silver(I) pyridinecarboxylate (nicotinic, picolinic and isonicotinic acids) and bipiridinecarboxylate (pyridine‐2,3‐dicarboxylic, pyridine‐2,4‐dicarboxylic and pyridine‐2,5‐dicarboxylic acids) complexes with Ag? O and Ag? N bonds against E. coli (ATCC 25922) and Streptococcus agalactiae (ISP 329‐09). The results show a tendency between the nature of Ag? X (X=oxygen and nitrogen) bonds and the rate or efficiency of antibacterial behavior. 相似文献
20.
Reactions of (tBu)2P? P?P(Br)tBu2 with LiP(SiMe3)2, LiPMe2 and LiMe, LitBu and LinBu The reactions of (tBu)2P? P?P(Br)tBu2 1 with LiP(SiMe3)2 2 yield (Me3Si)2P? P(SiMe3)2 4 and P[P(tBu)2]2P(SiMe3)2 5 , whereas 1 with LiPMe2 2 yields P2Me4 6 and P[(tBu)2]2PMe2 7 . 1 with LiMe yields the ylid tBu2P? P?P(Me)tBu2 (main product) and [tBu2P]2PMe 15 . In the reaction of 1 with tBuLi [tBu2P]2PH 11 is the main product and also tBuP? P?P(R)tBu2 21 is formed. The reaction of 1 with nBuLi leads to [tBu2P]2PnBu 17 (main product) and tBu2P? P?P(nBu)tBu2 22 (secondary product). 相似文献