首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with the numerical resolution of the incompressible Navier–Stokes equations in the velocity–vorticity form on non-orthogonal structured grids. The discretization is performed in such a way, that the discrete operators mimic the properties of the continuous ones. This allows the discrete equivalence between the primitive and velocity–vorticity formulations to be proved. This last formulation can thus be seen as a particular technique for solving the primitive equations. The difficulty associated with non-simply connected computational domains and with the implementation of the boundary conditions are discussed. One of the main drawback of the velocity–vorticity formulation, relative to the additional computational work required for solving the additional unknowns, is alleviated. Two- and three-dimensional numerical test cases validate the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
An algorithm for the solutions of the two-dimensional incompressible Navier–Stokes equations is presented. The algorithm can be used to compute both steady-state and time-dependent flow problems. It is based on an artificial compressibility method and uses higher-order upwind finite-volume techniques for the convective terms and a second-order finite-volume technique for the viscous terms. Three upwind schemes for discretizing convective terms are proposed here. An interesting result is that the solutions computed by one of them is not sensitive to the value of the artificial compressibility parameter. A second-order, two-step Runge–Kutta integration coupling with an implicit residual smoothing and with a multigrid method is used for achieving fast convergence for both steady- and unsteady-state problems. The numerical results agree well with experimental and other numerical data. A comparison with an analytically exact solution is performed to verify the space and time accuracy of the algorithm.  相似文献   

3.
Relaxation-based multigrid solvers for the steady incompressible Navier–Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods were used as smoothers in a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L2 norm of the velocity changes is reduced to 10?6 in a few 10's of fine-grid sweeps. The results of the study are used to draw conciusions on the strengths and weaknesses of the individual relaxation methods as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.  相似文献   

4.
Two Cartesian grid stretching functions are investigated for solving the unsteady incompressible Navier–Stokes equations using the pressure–velocity formulation. The first function is developed for the Fourier method and is a generalization of earlier work. This function concentrates more points at the centre of the computational box while allowing the box to remain finite. The second stretching function is for the second‐order central finite difference scheme, which uses a staggered grid in the computational domain. This function is derived to allow a direct discretization of the Laplacian operator in the pressure equation while preserving the consistent behaviour exhibited by the uniform grid scheme. Both functions are analysed for their effects on the matrix of the discretized pressure equation. It is shown that while the second function does not spoil the matrix diagonal dominance, the first one can. Limits to stretching of the first method are derived for the cases of mappings in one and two directions. A limit is also derived for the second function in order to prevent a strong distortion of a sine wave. The performances of the two types of stretching are examined in simulations of periodic co‐flowing jets and a time developing boundary layer. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
A new numerical method is developed to efficiently solve the unsteady incompressible Navier–Stokes equations with second-order accuracy in time and space. In contrast to the SIMPLE algorithms, the present formulation directly solves the discrete x- and y-momentum equations in a coupled form. It is found that the present implicit formulation retrieves some cross convection terms overlooked by the conventional iterative methods, which contribute to accuracy and fast convergence. The finite volume method is applied on the fully staggered grid to solve the vector-form momentum equations. The preconditioned conjugate gradient squared method (PCGS) has proved very efficient in solving the associate linearized large, sparse block-matrix system. Comparison with the SIMPLE algorithm has indicated that the present momentum coupling method is fast and robust in solving unsteady as well as steady viscous flow problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
A complete boundary integral formulation for incompressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for the lift and the drag hysteresis associated with a NACA0012 aerofoil oscillating in pitch show good agreement with available experimental data. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Flux splitting is applied to the convective part of the steady Navier–Stokes equations for incompressible flow. Partial upwind differences are introduced in the split first-order part, while central differences are used in the second-order part. The discrete set of equations obtained is positive, so that it can be solved by collective variants of relaxation methods. The partial upwinding is optimized in the same way as for a scalar convection–diffusion equation, but involving several Peclet numbers. It is shown that with the optimum partial upwinding accurate results can be obtained. A full multigrid method in W-cycle form, using red–black successive under-relaxation, injection and bilinear interpolation, is described. The efficiency of this method is demonstrated.  相似文献   

8.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
An inexact Newton method is used to solve the steady, incompressible Navier–Stokes and energy equation. Finite volume differencing is employed on a staggered grid using the power law scheme of Patankar. Natural convection in an enclosed cavity is studied as the model problem. Two conjugate-gradient -like algorithms based upon the Lanczos biorthogonalization procedure are used to solve the linear systems arising on each Newton iteration. The first conjugate-gradient-like algorithm is the transpose-free quasi-minimal residual algorithm (TFQMR) and the second is the conjugate gradients squared algorithm (CGS). Incomplete lower-upper (ILU) factorization of the Jacobian matrix is used as a right preconditioner. The performance of the Newton- TFQMR algorithm is studied with regard to different choices for the TFQMR convergence criteria and the amount of fill-in allowed in the ILU factorization. Performance data are compared with results using the Newton-CGS algorithm and previous results using LINPACK banded Gaussian elimination (direct-Newton). The inexact Newton algorithms were found to be CPU competetive with the direct-Newton algorithm for the model problem considered. Among the inexact Newton algorithms, Newton-CGS outperformed Newton- TFQMR with regard to CPU time but was less robust because of the sometimes erratic CGS convergence behaviour.  相似文献   

11.
The present study aims to accelerate the convergence to incompressible Navier–Stokes solution. For the sake of computational efficiency, Newton linearization of equations is invoked on non‐staggered grids to shorten the sequence to the final solution of the non‐linear differential system of equations. For the sake of accuracy, the resulting convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the proposed nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved due to the decrease of stencil points. The effectiveness of the implemented Newton linearization is demonstrated through computational exercises. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The unsteady incompressible Navier–Stokes equations are formulated in terms of vorticity and stream-function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the vorticity transport equation using the alternating direction implicit method, whereas the streamfunction equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem, prior to the onset of three-dimensionality in the experiment.  相似文献   

13.
Unsteady analytical solutions to the incompressible Navier–Stokes equations are presented. They are fully three-dimensional vector solutions involving all three Cartesian velocity components, each of which depends non-trivially on all three co-ordinate directions. Although unlikely to be physically realized, they are well suited for benchmarking, testing and validation of three-dimensional incompressible Navier–Stokes solvers. The use of such a solution for benchmarking purposes is described.  相似文献   

14.
For the solution of practical flow problems in arbitrarily shaped domains, simple Schwarz domain decomposition methods with minimal overlap are quite efficient, provided Krylov subspace methods, e.g. the GMRES method, are used to accelerate convergence. With an accurate subdomain solution, the amount of time spent solving these problems may be quite large. To reduce computing time, an inaccurate solution of subdomain problems is considered, which requires a GCR-based acceleration technique. Much emphasis is put on the multiplicative domain decomposition algorithm since we also want an algorithm which is fast on a single processor. Nevertheless, the prospects for parallel implementation are also investigated. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
The accuracy of colocated finite volume schemes for the incompressible Navier–Stokes equations on non‐smooth curvilinear grids is investigated. A frequently used scheme is found to be quite inaccurate on non‐smooth grids. In an attempt to improve the accuracy on such grids, three other schemes are described and tested. Two of these are found to give satisfactory results. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Fractional‐step methods solve the unsteady Navier–Stokes equations in a segregated manner, and can be implemented with only a single solution of the momentum/pressure equations being obtained at each time step, or with the momentum/pressure system being iterated until a convergence criterion is attained.The time accuracy of such methods can be determined by the accuracy of the momentum/pressure coupling, irrespective of the accuracy to which the momentum equations are solved. It is shown that the time accuracy of the basic projection method is first‐order as a result of the momentum/pressure coupling, but that by modifying the coupling directly, or by modifying the intermediate velocity boundary conditions, it is possible to recover second‐order behaviour. It is also shown that pressure correction methods, implemented in non‐iterative or iterative form and without special boundary conditions, are second‐order in time, and that a form of the non‐iterative pressure correction method is the most efficient for the problems considered. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Compact finite difference methods feature high‐order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower‐order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centres of cell surfaces. Here we introduce a high‐order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear‐driven cavity flow at Re = 103, a temporally periodic flow at Re = 104, and a spatially periodic flow at Re = 104. The results demonstrate the success of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A specific (hybrid) arrangement of variables is discussed to solve reactive compressible Navier–Stokes equations on staggered‐like grids with high‐order finite difference schemes. The objective is to improve the numerical flow solution at boundaries. Hybrid arrangement behaviour is compared with ‘pure’ colocated and staggered strategies. Classical Fourier analysis shows accuracy to be significantly improved in the hybrid case. One‐dimensional laminar flame test demonstrates increased robustness (in terms of mesh resolution), whereas computation of 1D exiting pressure wave propagation gives evidence that the method also improves accuracy in the prediction of non‐reflecting outflows, compared e.g. with the fully staggered scheme of (J. Comput. Phy. 2003). Multidimensional extension is illustrated through turbulent 2D planar and 3D expanding flames simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号