首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multinuclear NMR study on [Ln(ttha)]3? and [Ln{ttha(NHR)2}]? complexes (R=Et, CH2(CHOH)4CH2OH) shows that coordinating groups of the organic ligands in these complexes are occupying all coordination sites of the metal ions, leaving no space for coordination of H2O molecules (H6ttha=triethylenetetramine‐N,N,N′,N″,N′′′,N′′′‐hexaacetic acid). The lanthanides of the first half of the series bind the ttha‐type ligands in a decadentate fashion, while the complexes formed with the smaller ions of the second half of the lanthanide series are nonadentate. One carboxylate group of the ligand remains unbound in the latter complexes. In principle, the ttha complexes can exist in six enantiomeric forms. Only one of the pair of diastereoisomers can interconvert without decoordination of the ligand. This pair of isomers seems to be predominant in solution. For the [Ln{ttha(NHR)2}]? complexes, the number of chiral centers is larger, resulting in 32 possible enantiomeric forms of the complexes. The NMR spectra of [Nd{ttha(NHEt)2}]? indicate that two dynamic processes occur between the isomers in solution. The NMRD curves of [Gd(ttha)]3?, [Gd{ttha(NHEt)2}]?, and [Gd{ttha(NHgluca)2}]? (NHgluca=D ‐glucamine) show significant differences with the previously determined outer‐sphere contributions to the NMRD profiles of the corresponding [Gd{dtpa(NHR)2}]? complexes, which can be ascribed to differences in the parameters determining the electronic relaxation.  相似文献   

2.
By the reaction of sodium N,N′-ethylenedisalicylamidatocuprate ( I ) pentahydrate, Na2[Cu(samen)]·5H2O, with a manganese ( I ) salt and 2,2′-dipyridyl (bpy) or 1,10-phenanthroline (phen), the binuclear metal complexes [Cu(samen) Mn(L)2] (L ? bpy, phen) have been synthesized. Based on IR, elemental analyses and electronic spectra, the complexes are proposed to consist of a four-coordinated Cu( I ) in a distorted planar environment and Mn( I ) in a distorted octahedron. The complexes have been characterized with variable-temperature magnetic susceptibility (4.2—300 K) and the susceptibility data were least-squares fit to susceptibility equation derived from the spin Hamiltonian including single-ion zero-field interaction for Mn2+ ion, H?—2JS1·S2DS, where D is the axial zero-field splitting parameter for the Mn(II) ion. The exchange integral, J, was found to be —34.6 and —28.8 cm?1 for [Cu(samen)Mn(bpy)2] and [Cu(samen)Mn(phen)2] respectively. The weak antiferromagnetic spin-exchange interaction can be interpreted by considering σ-π exchange pathway.  相似文献   

3.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

4.
Two new oxovanadium(V) complexes, [2‐MePyH][VvO2(L)] (3) and[2‐EtPyH][VvO2,(L)] (4) (salicylaldehyde 5‐bromo salicyloylhydrazone is abbreviated as H2L; 2‐MePyH is protonated 2‐Mepyridine; 2‐EtPyH presents protonated 2‐Et‐pyridine) were obtained from a reaction of VOSO4 and H2L in acetonitrile‐methanol with small quantity of 2‐Me‐pyridine or 2‐Et‐pyridine, and characterized by X‐ray diffraction and spectroscopic methods. Crystal data: [2‐MePyH][VO2(L)] (3), C20H17N3O5BrV, Mr = 510.2, monoclinic, P21/n, a = 0.7363(1) nm, 6 = 0.9514(1) nm, c = 2.8594(2) nm, β = 95.305(2)°, Z = 4 and V=1.9946(3) nm3, μ(Mo Kα) = 2.539 mm?1; [2‐EtPyH][VO2(L)] (4), C21H19N3 O3BrV, Mr = 524.2, triclinic, P1 , a = 0.8051(1) nm, b = 0.9413(1) nm, c = 1.4648(2) nm, α=99.1900(10)°, α = 99.4530(10)°, γ = 104.6670(10)°, Z = 2 and V= 1.0355(2) nm3, μ(Mo Kα) = 2.448 mm?1, X‐Ray analyses revealed that the crystal structures of 3 and 4 have similar packing modes.  相似文献   

5.
Vibrational and Electronic Spectra of Decahalogenodiosmates(IV), [Os2X10]2?, X ? Cl, Br The IR and Raman spectra of the edge-sharing bioctahedral anions [Os2X10]2?, X ? Cl, Br, are assigned according to point group D2h. The bands are found in three characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(OsClt): 365–280, v(OsBrt): 235–195; in a middle region with bridging ligands v(OsClb): 270–240, v(OsBrb): 175–165 cm?1; the deformation bands are observed at distinct lower frequencies. The electronic spectra of the dimers show intraconfigurational transitions near 2000, 1000, and 600 nm which by position and intensity correspond to those of the monomeric complexes. They are therefore discussed separately for both metal centers according to C2v symmetry. Two additional band systems are presumable pair transitions arising from interactions of the central ions within the dimeric complexes. Due to the different bonding strength of terminal or bridging ligands the intensive charge transfer bands are shifted by 3000–4000 cm?1 bathochromicly or by 2000–3000 cm?1 hypsochromicly compared with the hexahaloosmates(IV).  相似文献   

6.
The scandium(III) cations in the structures of pentaaqua(biuret‐κ2O,O′)scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetrakis(biuret‐κ2O,O′)scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter‐ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O′‐bidentate biuret molecule and five water molecules. A dense network of N—H...Cl, O—H...O and O—H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square‐antiprismatic geometry arising from four O,O′‐bidentate biuret molecules. A network of N—H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three‐dimensional hydrogen‐bond networks.  相似文献   

7.
Two coordination polymers, [Co(phen)(oba)(H2O)2] ( 1 ) and [Cd3(phen)3(oba)2(Hoba)2(H2O)2] ( 2 ) (oba = 4, 4′‐oxybis(benzoate), phen = 1, 10‐phenanthroline) have been synthesized under hydrothermal conditions. Complex 1 crystallizes in monoclinic, P21/n, a = 7.543(6), b = 33.05(2), c = 9.902(5)Å, β = 103.69(2)°, V = 2398(3)Å3, Z = 4; 2 in monoclinic, P2/n, a = 15.11(1), b = 10.069(8), c = 28.02(2)Å, β = 101.83(1)°, V = 4174(5)Å3, Z = 2. X‐ray single‐crystal diffraction investigations shows that the complexes 1 and 2 consist of helical chains, which are further assembled into layers and networks via supramolecular interactions such as π—π stacking interactions and hydrogen bonds, respectively. The results indicate that the coordination environment is one of the most important factors for assembly of single‐stranded helical chains into double‐stranded helical chains via supramolecular interactions.  相似文献   

8.
Eu3+, Dy3+, and Yb3+ complexes of the dota‐derived tetramide N,N′,N″,N′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(1‐oxoethane‐2,1‐diyl)]tetrakis[glycine] (H4dotagl) are potential CEST contrast agents in MRI. In the [Ln(dotagl)] complexes, the Ln3+ ion is in the cage formed by the four ring N‐atoms and the amide O‐atom donor atoms, and a H2O molecule occupies the ninth coordination site. The stability constants of the [Ln(dotagl)] complexes are ca. 10 orders of magnitude lower than those of the [Ln(dota)] analogues (H4dota=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The free carboxylate groups in [Ln(dotagl)] are protonated in the pH range 1–5, resulting in mono‐, di‐, tri‐, and tetraprotonated species. Complexes with divalent metals (Mg2+, Ca2+, and Cu2+) are also of relatively low stability. At pH>8, Cu2+ forms a hydroxo complex; however, the amide H‐atom(s) does not dissociate due to the absence of anchor N‐atom(s), which is the result of the rigid structure of the ring. The relaxivities of [Gd(dotagl)] decrease from 10 to 25°, then increase between 30–50°. This unusual trend is interpreted with the low H2O‐exchange rate. The [Ln(dotagl)] complexes form slowly, via the equilibrium formation of a monoprotonated intermediate, which deprotonates and rearranges to the product in a slow, OH?‐catalyzed reaction. The formation rates are lower than those for the corresponding Ln(dota) complexes. The dissociation rate of [Eu(dotagl)] is directly proportional to [H+] (0.1–1.0M HClO4); the proton‐assisted dissociation rate is lower for [Eu(H4dotagl)] (k1=8.1?10?6 M ?1 s?1) than for [Eu(dota)] (k1=1.4?10?5 M ?1 s?1).  相似文献   

9.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

10.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

11.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

12.
The (C7H12N2)2[SnCl6]Cl2·1.5H2O complex is a new member of the family of hybrid organic–inorganic perovskite compounds. It exhibits two order–disorder phase transitions with changes in the conformation of aromatic cations at the two transition temperatures 360 and 412 K. Differential scanning calorimetry, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FT-IR) spectroscopy were used to investigate these phase transitions. These transition mechanisms were investigated in terms of the spin–lattice relaxation times T1 for 1H static NMR and the chemical shifts for 13C CP–MAS. The temperature dependence of T1(1H) and 13C chemical shifts are changed near TC1 and TC2. Furthermore, the splitting for 13C NMR signals in Phases (II) and (III) indicated a ferroelastic characteristic of the compound. In addition, FT-IR results indicate that the ordered conformational structure of aromatic cations undergoes a remarkable disorder with increasing temperature. The NMR and FT-IR studies suggest that the phase transition mechanisms are related to the reorientational motion of [C7H12N2]2+ cations as a whole. Phase transition was examined in light of the interesting optical properties of this material.  相似文献   

13.
1, 3‐Diaminobenzene reacts readily with PPh2Cl to give N, N, N′, N′‐tetrakis(diphenylphosphanyl)‐1, 3‐diaminobenzene ( 1 ) in excellent yield. The dinuclear complex [1, 3‐{cis‐Mo(CO)4(PPh2)2N}2C6H4] ( 2 ) is obtained in high yield from 1 and cis‐[Mo(CO)4(NCEt)2]. Compounds 1 and 2 were characterized by NMR spectroscopy (1H, 13C, 31P) and by crystal structure determination. The latter shows the formation of a bis‐chelate complex with Mo‐P‐N‐P four‐membered rings.  相似文献   

14.
Two bis(N,N-dialkylamide) derivatives of DTPA [(carboxymethyl)iminobis (ethylenenitrilo) tetraacetic acid], DTPA-BDMA = the bis(N,N-dimethylamide) and DTPA-BDEA = the bis(N,N-diethylamide) were synthesized. Their protonation constants were determined by potentiometric titration in 0.10 M Me4NNO3 and by NMR pH titration at 25.0 ± 0.1 °C. Stability and selectivity constants were measured to evaluate the possibility of using the corresponding gadolinium(III) complexes for magnetic resonance imaging contrast agents. The stability constants of gadolinium(III), copper(II), zinc(II), and calcium(II) complexes with DTPA-BDMA and DTPA-BDEA were investigated quantitatively by potentiometry. The stability constant for gadolinium(III) complexes is larger than those for Ca(II), Zn(II), and Cu(II) complexes. The selectivity constants and modified selectivity constants of the amides for Gd3+ over endogenously available metal ions were calculated. Effectiveness of these two ligands in binding divalent and trivalent metal ions in biological media is assessed by comparing pM values at physiological pH 7.4. Spin-lattice relaxivity values R1 for Gd(III) complexes were also determined. The observed relaxivity values were found to decrease with increasing pH in the acid range below pH 4 and relaxivity values became invariant with respect to pH changes over the range of 4–10. 17O NMR shifts showed that the [Dy(DTPA-BDMA)] and [Dy(DTPA-BDEA)] complexes had one inner-sphere water molecule. Water proton spin-lattice relaxation rates for the [Gd(DTPA-BDMA)] and [Gd(DTPA-BDEA)] complexes were also consistent with one inner-sphere gadolinium(III) coordination position.  相似文献   

15.
The solvatochromic compound [Cu(tfmh)Me4en]ClO4 (tfmh? denotes the anion of 1,1,1-trifluoro-6-methyl-2,4-heptanedione) was prepared and its structure has been determined from three-dimensional X-ray diffraction data. The structure consists of discrete [Cu(tfmh)Me4en]+ monomeric units and perchlorate ions. The copper(II) ion is surrounded by the two nitrogen atoms of the diamine molecule and the two oxygen atoms of the β-dionato anion. The N,N,N′,N′-tetramethyl-1,2-diaminoethane, Me4en, coordinates as bidentate ligand through the nitrogen atoms and adopts the gauche conformation and λ configuration. The CuN2O2 chromophore is virtually planar. The compound crystallizes in the monoclinic system (space group P21/c) with a = 11.9520(2), b = 14.6600(2), c = 17.2240(4) Å, β = 135.72(2)°, Z = 4 and V = 2107.01(7) Å3.  相似文献   

16.
The structure of the title compound, [Cu2(C12H24N4O2)(C3H4N2)2(CH4O)2](ClO4)2 or [Cu2(dmoxpn)(HIm)2(CH3OH)2](ClO4)2, where dmoxpn is the dianion of N,N′‐bis­[3‐(dimethyl­amino)prop­yl]oxamide and HIm is imidazole, consists of a centrosymmetric trans‐oxamidate‐bridged copper(II) binuclear cation, having an inversion centre at the mid‐point of the central C—C bond, and two perchlorate anions. The CuII atom has square‐pyramidal coordination geometry involving two N atoms and an O atom from the dmoxpn ligand, an N atom from an imidazole ring, and an O atom from a methanol mol­ecule. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and imidazole π–π stacking inter­actions to form a three‐dimensional supra­molecular array.  相似文献   

17.
In the crystal structure of the title complex, [Cu2(C10H20N4O2)(C10H8N2)2](ClO4)2, the deprotonated dmaeoxd2− ligand {H2dmaeoxd is N,N′‐bis[2‐(dimethylamino)ethyl]oxamide} occupies an inversion centre at the mid‐point of the central C—C bond and is thus in a trans conformation. The two CuII atoms are located in slightly distorted square‐based pyramidal environments. The binuclear units interact with each other viaπ–π interactions to form a one‐dimensional chain extending in the c direction.  相似文献   

18.
Aroylhydrazones of ortho‐hydroxy aldehydes are Schiff base ligands that typically coordinate as a chelate in an O,N,O′‐manner. Dinuclear complexes are normally observed, with the phenolate O atom acting as the bridging atom. The switchable protonation state of the tridentate N′‐(2‐hydroxybenzylidene)benzohydrazide (H2sabhz) ligand can lead to variations in the resulting supramolecular structure. The title compound, [Pb2(C14H10N2O2)2], was prepared by the reaction of [Pb(OAc)2]·3H2O (OAc is acetate) with the benzoylhydrazone derivative of salicylaldehyde, i.e. H2sabhz, in the presence of triethylamine in methanol. In the crystal structure, each PbII atom of the dimer has an NO3 coordination environment, with one sabhz ligand coordinating in an O,N,O′‐manner and with the second sabhz ligand coordinating via the bridging phenolate O atom, since the dimers are located on a centre of inversion. It has been found that the dimers are connected by Pb…N interactions, resulting in a two‐dimensional supramolecular network which shows the [32.52,3.53] net topology. The s2 electron pair of the PbII ion clearly influences the observed intermolecular interactions.  相似文献   

19.
Complex formation between N,N,N′,N′‐tetrakis(2‐aminoethyl)ethane‐1,2‐diamine (penten) and the metal ions Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pb2+, and Tl3+ (in 1.00M NaNO3 and 25°) was investigated by potentiometry and spectrophotometry. These are the first reported values of the stability constants for this ligand with Ag+, Pb2+, and Tl3+. The X‐ray crystal structure of [Tl(NO3)(penten)](NO3)2 was determined. In this structure, Tl3+ shows a coordination number of seven made up of the six N‐donors and one O‐atom of NO.  相似文献   

20.
In the new tin(IV) and copper(II) complexes, cis‐dichlorido‐trans‐dimethyl‐cis‐bis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)tin(IV), [Sn(CH3)2Cl2(C18H36N3OP)2], (I), and trans‐diaquabis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)copper(II) dinitrate–N,N′,N′′‐tricyclohexylphosphoric triamide (1/2), [Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP, (II), the N,N′,N′′‐tricyclohexylphosphoric triamide (PTA) ligands exist as hydrogen‐bonded dimers via P=O...H—N interactions around the metal center. The asymmetric unit in (I) consists of one complete complex molecule located on a general position. The SnIV coordination geometry is octahedral with two cis hydrogen‐bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a [Cu(PTA)2(H2O)2]2+ dication on a special position (site symmetry for the Cu atom), one nitrate anion and one free PTA molecule, both on general positions. The complex adopts a square‐planar trans‐[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water molecules. Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water molecule; the phosphoryl O atom acts as a double‐H‐atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen‐bonded molecules in (II) adopt a slightly distorted tetrahedral environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号