首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[TMPA]4[Si8O20] · 34 H2O ( 1 ) and [DDBO]4[Si8O20] · 32 H2O ( 2 ) have been prepared by crystallization from aqueous solutions of the respective quaternary alkylammonium hydroxide and SiO2. The crystal structures have been determined by single-crystal X-ray diffraction. 1 : Monoclinic, a = 16.056(2), b = 22.086(6), c = 22.701(2) Å, β = 90.57(1)° (T = 210 K), space group C2/c, Z = 4. 2 : Monoclinic, a = 14.828(9), b = 20.201(7), c = 15.519(5) Å, β = 124.13(4)° (T = 255 K), space group P21/c, Z = 2. The polyhydrates are structurally related host-guest compounds with three-dimensional host frameworks composed of oligomeric [Si8O20]8? anions and H2O molecules which are linked via hydrogen bonds. The silicate anions possess a cube-shaped double four-ring structure and a characteristic local environment formed by 24 H2O molecules and six cations (TMPA, [C8H20N2]2+, or DDBO, [C8H18N2]2+). The cations themselves reside as guest species in large, irregular, cage-like voids. Studies employing 29Si NMR spectroscopy and the trimethylsilylation method have revealed that the saturated aqueous solutions of 1 and 2 contain high proportions of double four-ring silicate anions. Such anions are also abundant species in the saturated solution of the heteronetwork clathrate [DMPI]6[Si8O18(OH)2] · 48.5 H2O ( 3 ) with 1,1-dimethylpiperidinium (DMPI, [C7H16N]+) guest cations.  相似文献   

2.
Crystalline sodium aluminogermanate hydroxosodalite hydrate Na6+x[Al6Ge6O24](OH)x · nH2O with x ≈ 1.6 and n ≈ 3.0 has been synthesized by reacting Al2O3, GeO2 and NaOH solution under hydrothermal conditions, and characterized by means of simultaneous thermal analysis, differential scanning calorimetry, X-ray and neutron diffraction as well as 1H and 23Na MAS NMR and IR spectroscopy. The material undergoes a reversible structural phase transition at Tc = 166 K (heating mode), which is actually a complex two-step transformation as detected in DSC measurements. Structure refinements of the cubic high-temperature form (cell constant a = 9.034(2) Å, room temperature) with single-crystal X-ray and powder neutron diffraction data have not yielded overall satisfactory results, probably due to the solid-solution character of the hydrosodalite. The refinements nevertheless demonstrate that (i) the sodalite host framework is a strictly alternating array of corner-linked AlO4 and GeO4 tetrahedra, and (ii) most polyhedral [4668] cavities are occupied by four sodium cations and one orientationally disordered hydrogen dihydroxide anion, H3O2?, which possesses a strong central hydrogen bond. Variable-temperature 1H MAS NMR spectra unambiguously confirm the presence of H3O2? ions and, in addition, reveal a dynamical intraionic exchange between the central and terminal protons and a rotational diffusion of those anions to occur in the high-temperature form. The nature of the guest complexes filling the remaining cages could not be unambiguously determined. Results are compared with those obtained in recent studies on the related sodium aluminosilicate hydrosodalite system of the general formula Na6+x[Al6Si6O24] (OH)x · nH2O.  相似文献   

3.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

4.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

5.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

6.
The binary germanides M12Ge17 and M4Ge9 (M ? Na, K, Rb, Cs) and the stannides M12Sn17 and M4Sn9 (M ? K, Rb, Cs) were identified by a combination of direct synthesis, thermogravimetric analysis, vibrational spectroscopy, X-ray powder data and single crystal structure analysis. The M12E17 phases contain the cluster anions [E9]4? and [E4]4? in the ratio 1:2, forming a hierarchical structure with the cluster anions at the atomic positions of the hexagonal Laves phase MgZn2. Like the M4E4 phases, the M4Ge9 compounds are hierarchical derivatives of the cubic Cr3Si structure but with [Ge9]4? anions. The thermogravimetric analyses give strong evidence for the existence of at least one more phase with [E9]4? and [E4]4? clusters and of the clathrate phases M6E136 in addition to the well-known M8E442 chlathrates.  相似文献   

7.
Reaction of [GaBi3]2? with [Sm(C5Me4H)3] yielded the first protonated ternary intermetalloid clusters [Sm@Ga3?xH3?2xBi10+x]3? ( 1 ; x=0,1). The presence of the Ga? H bonds and the transfer of electrons and protons during the formation of 1 were elucidated by a combination of experimental and quantum chemical methods, thereby rationalizing the role of the solvent ethane‐1,2‐diamine as a Brønsted acid. As an organic by‐product, we observed the previously unknown octamethylfulvene ( 2 ) upon C? C coupling of (C5Me4H)?.  相似文献   

8.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function.  相似文献   

9.
Reactions in the gas phase of the 13- and 15-electron radical anions [Cr(CO)3]? ˙ and [Cr(CO)4]? ˙ with a series of 27 aldehydes, ketones, esters and ethers have been examined. Sequential alkane eliminations and metal-bonded CO ligand displacements were the principal reactions identified for the RCHO/[Cr(CO)3]? ˙ systems with the latter reaction also common to the RCHO/[Cr(CO)4]? ˙ systems. While [Cr(CO)4]? ˙ was generally unreactive towards ketones R · R'CO, the principal products identified for [Cr(CO)3]? ˙/ketone reactions were the metal-decarbonylated species, respectively [R · R'CO · Cr(CO)x]? ˙ with x = 0–3, and [R · (R' - H2)CO · Cr(CO)2]? ˙. The reaction of [Cr(CO)3]? ˙ with esters RCOOR' proceeds via metal insertion into the alkoxy C? O bond to give end products of the type [R'O · Cr · R(CO)2]? and [R'O? Cr(CO)3]? while the sole ionic products of dialkyl ether/[Cr(CO)3]? ˙ reactions were identified as the alkoxytricarbonylchromium species [RO · Cr(CO)3]?.  相似文献   

10.
Hydroxo Compounds. 10. The Sodium Oxohydroxostannates(II) Na4[Sn4O(OH)10] and Na2[Sn2O(OH)4] Na4[Sn4O(OH)10] = Na4[Sn(OH)3]2[Sn2O(OH)4] ( I ) and Na2[Sn2O(OH)4] ( II ) have now been doubtlessly characterized as the first Na-hydroxostannates(II). I crystallizes monoclinic in P21/n (a = 1522.4(5) pm, b = 830.0(2) pm, c = 1276.0(3) pm, β = 104.8(2)°, Z = 4, R = 0.047, 1137 Ihkl); II crystallizes orthorhombic in P212121 (a = 1450(2) pm, b = 1665(2) pm, c = 590.7(8) pm, Z = 8, R = 0.042, 1208 Ihkl). II is identical with the compound which was described up to now as “Na[Sn(OH)3]”. The new compounds contain the complex anions [Sn(OH)3]? and [Sn2O(OH)4]2?, whose structures are now proved. The oxotetrahydroxo-distannate(II) anion [Sn2O(OH)4]2? exhibits a syn-conformation with respect to the projection along the (Sn? Sn) vector. The two compounds crystallize with pronounced layer structures, which show direct topotactical relations with one another as well as with SnO. This relates closely to the fast formation of SnO from crystals of I and II .  相似文献   

11.
Crystal Structures of Octacyanomolybdates(IV). III (NMe4)3Li[Mo(CN)8] · 3.5 H2O and Cs7Na[Mo(CN)8]2 · 4.17 H2O: Examples of Dodecahedral and Square Antiprismatic Eight-Coordination At single crystals of the hydrated tetragonal cyano complexes (NMe4)3Li[Mo(CN)8] · 3.5 H2O (a = 1707.5(3), c = 1054.9(2) pm, space group P421m, Z = 4) and Cs7Na[Mo(CN)8]2 · 4.17 H2O (a = 1547.9(1), c = 3254.6(6) pm, I41/a, Z = 8) X-ray structure determinations were performed. The [Mo(CN)8]4– polyhedra agree with respect to their mean distances Mo–C and C–N (216,7/114,3 pm resp. 216,1/114,7 pm) within their standard deviations, however, there is a distorted dodecahedron in the first case ((NMe4)3Li-complex), and a distorted square antiprism in the second (Cs7Na-complex). The coordination of the counter cations, partly hydrated, the formation of hydrogen bridges and the packing of the complex anions is discussed.  相似文献   

12.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

13.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

14.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

15.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

16.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

17.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of the Linkage Isomeric Chlororhodanoiridates(III) trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? By treatment of Na2[IrCl6] with NaSCN in 2N HCl the linkage isomers trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations on single crystals of trans-(n-Bu4N)3[IrCl2(SCN)4] ( 1 ) (monoclinic, space group P21/a, a = 18.009(4), b = 15.176(3), c = 23.451(4) Å, β = 93.97(2)°, Z = 4) and trans-(Me4N)3[IrCl2(NCS)(SCN)3] ( 2 ) (monoclinic, space group P21/a, a = 17.146(5), b = 9.583(5), c = 18.516(5) Å, β = 109.227(5)°, Z = 4) reveal the complete ordering of the complex anions. The via S or N coordinated thiocyanate groups are bonded with Ir? S? C angles of 105.7–109.7° and the Ir? N? C angle of 171.4°. The torsion angles Cl? Ir? S? C and N? Ir? S? C are 3.6–53.0°. The IR and Raman spectra of ( 1 ) are assigned by normal coordinate analysis using the molecular parameters of the X-ray determination. The valence force constants are fd(IrS) = 1.52 and fd(IrCl) = 1.72 mdyn/Å.  相似文献   

18.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

19.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   

20.
The oxonitridoalumosilicates (so‐called sialons) MLn[Si4?xAlxOxN7?x] with M = Eu, Sr, Ba and Ln =Ho, Er, Tm, Yb were obtained by the reaction of the respective lanthanoid metal, the alkaline earth carbonates or europium carbonate, resp., AlN, “Si(NH)2” and MCl2 as a flux in a radiofrequency furnace at temperatures around 2100 °C. The compounds MLn[Si4?xAlxOxN7?x] are relevant for the investigation of substitutional effects on the materials properties due to their ability of tolerating a comparatively large phase width up to x ≈ 2.0(5). The crystal structures of the twelve compounds were refined from X‐ray single crystal data and X‐ray powder data and are found to be isotypic to the MYb[Si4N7] structure type. The compounds crystallize in space group P63mc (no. 186, hexagonal) and are made up of chains of so‐called starlike units [N[4](SiN3)4] or [N[4]((Si,Al)(O,N)3)4], respectively. These units are formed by four (Si,Al)(N/O)4 tetrahedra sharing a common central nitrogen atom. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on the four‐fold bridging site and nitrogen and oxygen were distributed equally on both of the two‐fold bridging sites, resulting in charge neutrality of the compound. The Si and Al atoms were distributed equally on their two crystallographic sites, referring to their elemental proportion in the compound, due to being poorly distinguishable by X‐ray methods. The chemical compositions of the compounds were derived from electron probe micro analyses (EPMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号