首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of an alkyl group X? from acetylenic alcohols HC?C? CX(OH)(CH3) and gas phase protonation of HC?C? CO? CH3 are both shown to yield stable HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}(OH)(CH3) ions. Ions of this structure are unique among all other [C4H5O]+ isomers by having m/z 43 [C2H3O]+ as base peak in both the metastable ion and collisional activation spectra. It is concluded that the composite metastable peak for formation of m/z 43 corresponds to two distinct reaction profiles which lead to the same product ion, CH3\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O, and neutral, HC?CH. It is further shown that the [C4H5O]+ ions from related alcohols (like HC?C? CH(OH)(CH3)) which have an α-H atom available for isomerization into energy rich allenyl type molecular ions, consist of a second stable structure, H2C?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? C(OH)?CH2.  相似文献   

2.
The neutral counterparts of the C2H7O+ isomers CH3O+ (H)CH3, CH3CH2OH2+ and $ {\rm C}_2 \,{\rm H}_4 \,\, \cdot \cdot \cdot \mathop {\rm H}\limits^ + \, \cdot \cdot \cdot {\rm OH}_2 $ were studied by neutralization-reionization mass spectrometry. Protonated dimethyl ether and its —O(D)+ analogue were produced by protonation (deuteration) of dimethyl ether and also generated as a fragment ion from (labeled) ionized CH3OCH2CH(OH)CH3 by loss of CH3CO?. It was observed that the dissociation characteristics of the ions and the stability of their neutral counterpart depended on the internal energy of the protonated ether ions. Stable neutral CH3?(H)CH3 was only produced from energy-rich ions. The classical protonated ethanol ion CH3CH2OH2+ (a) was produced at threshold by the loss of CH3CO?. from ionized butane-2,3-diol. Mixtures of a with the non-classical ion $ {\rm C}_2 \,{\rm H}_4 \,\, \cdot \cdot \cdot \mathop {\rm H}\limits^ + \, \cdot \cdot \cdot {\rm OH}_2 $ (b) were produced by reaction of C2H5+ ions with H2O. As for the protonated ether, only high-energy a and/or b ions yielded stable hypervalent radicals. It is suggested that the stable C2H7?O radicals are Rydberg states.  相似文献   

3.
Three new [C2H6O]+˙ ions have been generated in the gas phase by appropriate dissociative ionizations and characterized by means of their metastable and collisionally induced fragmentations. The heats of formation, ΔHf0, of the two ions which were assigned the structures [CH3O(H)CH2]+˙ and [CH3CHOH2]+˙ could not be measured. The third isomer, to which the structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = \mathop {\rm C}\limits^{\rm .} {\rm H} \cdot \cdot \cdot \mathop {\rm H}\limits^ + \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} is tentatively assigned, was measured to have ΔHf0 = 732±5 kJ mol?1, making it the [C2H6O]+˙ isomer of lowest experimental heat of formation. It was found that the exothermic ion–radical recombinations [CH2OH]++CH3˙→[CH3O(H)CH2]+˙ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm + } {\rm HOH + H}^{\rm .} $\end{document}→[CH3CHOH2]+˙ have large energy barriers, 1.4 and ?0.9 eV, respectively, whereas the recombinations yielding [CH3CH2OH]+˙ have little or none.  相似文献   

4.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

5.
Pure [CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} ions are generated only in metastable fragmentations of [CH2?CHCH2X]+˙, X=Cl, Br, I, and [CH3CX?CH2]+˙, X=Br, I, respectively. For ion source generated [C3H5]+ ions there is some structural interconversion. The structure characteristic feature of their collisional activation mass spectra is the ratio m/z 27 ([C2H3]+): m/z 26 ([C2H2]+˙). For \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} the ratio is only weakly dependent upon the translational energy of the ion. For [CH2CHCH2]+, the ratio rises sharply as translational energy is reduced, from 0.9 at 8 kV to c. 3 at 1 kV. [CH2CHCH2]+ ions generated by charge reversal of [CH2CHCH2]? show higher ratios, resulting from their lower average internal energy content. It must therefore be emphasized that [C3H5]+ ion structure assignments should only be made using reference data which apply to specific experimental conditions. [C3H5]+ daughter ion structures for a number of well-known fragmentations have been established. The heat of formation of the 2-propenyl cation was measured to be 969±5 kJ mol?1. Labelling experiments show that at low internal energies, allyl cations do not undergo atom randomization in c. 1–2 μs; high internal energy ions of longer lifetime (c. 8 μs) show complete atom randomization. H˙ atom loss from [13CH3CH?CH2]+˙ has been shown to generate [13CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {}^{{\rm{13}}}{\rm{CH}}_{\rm{2}} \mathop {\rm{C}}\limits^{\rm{ + }} - {\rm{CH}}_{\rm{3}} $\end{document} without any skeletal rearrangement.  相似文献   

6.
Positive and negative cluster ions in methanol have been examined using a direct fast atom bombardment (FAB) probe technique. Positive ion (CH3OH)IIH + clusters with n = 1-28 have been observed and their clusters are the dominant ions in the low-mass region. Cluster-ion reaction products (CH3OH)II(H2O)H+ and (CH3OH)II(CH3OCH3)H+ are observed for a wide range of n and the abundances of these ions decrease with increasing n. The negative ion (CH3OH)II(CH3O)? clusters are also readily observed with n = 0-24 and these form the most-abundant negative ion series at low n. The (CH3OH)II(CH2O)?, (CH3OH)II(HIIO)(CH2O)? and (CH3OH)II(H2OXCH3O)? cluster ions are formed and the abundances of these ions approach those of the (CH3OH)II(CH3O)? ion series at high n. Cluster-ion structures and energetics have been examined using semi-empirical molecular orbital methods.  相似文献   

7.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

8.
Hydration of alkylammonium ions under nonanalytical electrospray ionization conditions has been found to yield cluster ions with more than 20 water molecules associated with the central ion. These cluster ion species are taken to be an approximation of the conditions in liquid water. Many of the alkylammonium cation mass spectra exhibit water cluster numbers that appear to be particularly favorable, i.e., “magic number clusters” (MNC). We have found MNC in hydrates of mono- and tetra-alkyl ammonium ions, NH3(C m H2m+1)+(H2O) n , m=1–8 and N(C m H2m+1) 4 + (H2O) n , m=2–8. In contrast, NH2(CH3) 2 + (H2O) n , NH(CH3) 3 + (H2O) n1 and N(CH3) 4 + (H2O) n do not exhibit any MNC. We conjecture that the structures of these magic number clusters correspond to exohedral structures in which the ion is situated on the surface of the water cage in contrast to the widely accepted caged ion structures of H3O+(H2O) n and NH 4 + (H2O) n .  相似文献   

9.
The structure and decomposition of the [C7H7]+ ions produced by electron-impact from o-, m- and p-chlorotoluene, o-, m- and p-bromotoluence, and p-iodotoluence, have been investigated. By determining the relative abundance of normal and metastable ions, these [C7H7]+ ions at electron energy of 20 eV are shown to be so-called ‘tropylium ions’. The amount of the internal energy of the [C7H7]+ ion estimated by the relative ion abundance ratios, ? [C5H5]+/[C7H7]+ and m*/[C7H7]+ for the decomposition \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document}, is in the order iodotoluene > bromotoluene > chlorotoluene. The heats of formation of the activated complexes for the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document} were estimated. The values suggest that the decomposing [C7H7]+ ions from various halogenotoluenes are identical in structure.  相似文献   

10.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In isobutane chemical ionization mass spectrometry benzyl alcohol exhibits ions at m/z 147 (‘M + 39’) that arise by a loss of H2O from [M + C4H9]+, i.e.M + 57’ complex ions. Electrophilic aromatic substitution of a proton at an ortho-position of neutral C6H5CH2OH with [t-C4H9]+ and, alternatively, nucleophilic substitution of H2O at the benzylic carbon in \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm C_6 H_5 CH_2}\mathop {\rm O}\limits^+ {\rm H}_2 $\end{document} with CH2?C (CH3)2 are discussed as possible pathways. Evidence in favor of the latter is derived from the analysis of C6D5CH2OH and C6H5CD2OH for the origin of the H-atoms lost in H2O. The inferred ion structure of m/z 147 is verified by mass-analyzed ion kinetic energy (MIKE.) measurements of its collision-activated (CA.) decomposition. MIKE./CA. spectra of mass-selected m/z 147 ions, once generated by (CI(i-C4H10) from benzyl alcohol and, once, from 2-methyl-4-phenyl-2-butanol match closely and, thus, reflect identical ion structures. With reference to the simple genesis of this ion from the latter precursor, the structure in question can be concluded to be \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm C_6 H_5 CH_2 CH_2}\mathop {\rm C}\limits^+ ({\rm CH}_3)_2 $\end{document} .  相似文献   

12.
Gas-phase ion–molecule reactions of transition metal ions, M+ (M+ = Ni+, Co+, Fe+ and Mn+), with six aromatic ring-containing nitriles were investigated in a modified fast atom bombardment (FAB) source. It is shown that the monoadduct, (Ph(CH2)nCN)–M+, is one of the most abundant ion–molecule reaction products. The main fragments in the FAB source are the [C7H7]+ and [C8H9]+ ions, and their formation is shown to involve metal ion insertion into the nitriles rather than direct bond cleavage from the ‘free’ or complexed nitriles after FAB ionization. An intramolecular oxidation–reduction reaction, giving [C7H7]+, is found in the metastable and collisionally induced dissociations of benzyl nitrile adducts accompanied by neutral MCN formation, but not seen for longer chain samples. An ortho effect is observed in the elimination of HCN from the 2-methylbenzyl nitrile adduct ions. This reaction dominates the metastable ion spectrum of the adduct of Mn+, whereas metal detachment is nearly the major process for the other complexes of Mn+. The different bond-insertion selectivities of the metal ions are also shown.  相似文献   

13.
Specific ion/molecule reactions are demonstrated that distinguish the structures of the following isomeric organosilylenium ions: Si(CH3) 3 + and SiH(CH3)(C2H5)+; Si(CH3)2(C2H5)+ and SiH(C2H5) 2 + ; and Si(CH3)2(i?C3H7)+, Si(CH3)2(n?C3H7)+, Si(CH3)(C2H5) 2 + , and Si(CH3)3(π?C2H4)+. Both methanol and isotopically labeled ethene yield structure-specific reactions with these ions. Methanol reacts with alkylsilylenium ions by competitive elimination of a corresponding alkane or dehydrogenation and yields a methoxysilylenium ion. Isotopically labeled ethene reacts specifically with alkylsilylenium ions containing a two-carbon or larger alkyl substituent by displacement of the corresponding olefin and yields an ethylsilylenium ion. Methanol reactions were found to be efficient for all systems, whereas isotopically labeled ethene reaction efficiencies were quite variable, with dialkylsilylenium ions reacting rapidly and trialkylsilylenium ions reacting much more slowly. Mechanisms for these reactions and differences in the kinetics are discussed.  相似文献   

14.
An account is given of the development of the proposal that ion–neutral complexes are involved in the unimolecular reactions of onium ions (R1R2C?Z+R3; Z = O, S, NR4; R1, R2, R3, R4 = H, CnH2n + 1), with particular emphasis on the informative C4H9O+ oxonium ion system (Z = O; R1, R2 = H; R3 = C3H7). Current ideas on the role of ion-neutral complexes in cation rearrangements, hydrogen transfer processes and more complex isomerizations are illustrated by considering the behaviour of isomeric CH3CH2CH2X+ and (CH3)2CHX+ species [X = CH2O, CH3CHO, H2O, CH3OH, NH3, NH2CH3, NH(CH3)2, CH2?NH, CH2?NCH3, CO, CH3˙, Br˙ and I˙]. Attention is focused on the importance of four energetic factors (the stabilization energy of the ion–neutral complex, the energy released by rearrangement of the cationic component, the enthalpy change for proton transfer between the partners of the ion neutral complex and the ergicity of recombination of the components) which influence the reactivity of the complexes. The nature and extent of the chemistry involving ion-neutral complexes depend on the relative magnitudes of these parameters. Thus, when the magnitude of the stabilization energy exceeds the energy released by cation rearrangement, the ergicity of proton transfer is small, and recombination of the components in a new way is energetically favourable, extensive complex-mediated isomerizations tend to occur. Loss of H2O from metastable CH2?O+C3H7 ions is an example of such a reaction. Conversely, if the stabilization energy is small compared with the magnitude of the energy released by eation rearrangement, the opportunities for complex-mediated processes to become manifest are decreased, especially if proton transfer is endoergic. Thus, CH3CH2CH2CO+ expels CO, with an increased kinetic energy release, after rate-limiting isomerization of CH3CH2CH2+? CO to (CH3)2CH+? CO has taken place. When proton transfer between the components of the complex is strongly exoergic, fragmentation corresponding to single hydrogen transfer occurs readily. The proton-transfer step is often preceded by cation rearrangement for CH3CH2CH2X+ species. In such circumstances, the involvement of ion–neutral complexes can be detected by the observation of unusual site selectivity in the hydrogen-transfer step. Thus, C3H6 loss from CH2?N+(R1)CH2CH2CH3 (R1 = H, CH3, C3H7) immonium ions is found by 2H-labelling experiments to proceed via preferential α-and γ-hydrogen transfer; this finding is explained if the incipient +CH2CH2CH3 ion isomerizes to CH3CH+CH3 prior to proton abstraction. In contrast, the isomeric CH2?N+(R1)CH(CH3)2 species undergo specific β-hydrogen transfer because the developing CH3CH+CH3 cation is stable with respect to rearrangements involving a 1,2-H shift.  相似文献   

15.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

16.
All the metastable transitions observed above m/z 39 in the first field-free region were compared for the three positional isomers of dimethoxybenzene. The observed isomer-dependent fragmentation processes, in particular the formation and decomposition of the m/z 95 (C6H7O)+ ion, are discussed in terms of two competing fragmentations [elimination of CH3 and CHnO (n = 1–3) and formation of methoxycyclopentadienyl and protonated phenol ions] and the relative energies of several isomers of the C6H7O+ ion calculated with molecular orbital theory.  相似文献   

17.
The structures of the m/z 87, [C4H7O2]+, ions generated by dissociative ionization of CH3CGXCOOCH3 and XCH2CH2COOCH3 (X = CH3, Cl, Br, and I) have been investigated via their unimolecular and collisionally activated fragmentations and by apperance energy measurements. For both precursors loss of X = CH3 produced, via H atom transfer, ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_2 = CH}\mathop {\rm C}\limits^{\rm + } \left({{\rm OH}} \right){\rm OCH}_{\rm 3} $\end{document} (a), ΔHf = 386 kj mol?1. In marked contrast, loss of I˙ from ionized CH3CHICOOCH3 and ICH2CH2COOCH3 proceeded without rearrangement to yield respectively ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_3}\mathop {\rm C}\limits^{\rm + } {{\rm HCOOCH_3}} $\end{document} (b), ΔHf = 480 kJ mol?1 and (c), ΔHf = 450 kJ mol?1. These different fragmentation behaviours are explained via photoelectron spectra which show that the formal charge site in the precursor ion is at the carbonyl oxygen when X = CH3 but at the halogen atom when X = I. The precursor molecules X = Cl and Br display both of the above characteristics, CH3CHXCOOCH3 yielding mixtures of a and b and XCH2CH2COOCH3 producing a and c ions.  相似文献   

18.
Collisionally activated spectra demonstrate that CH3CH2C?O+ rather than \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CHCH = }\mathop {\rm O}\limits^{\rm + } {\rm H}$\end{document} is formed in the metastable losses of hydrogen from [C3H6O] ions with the oxygen on the first carbon. This provides another example of formation of an acyl ion following ‘ketonization’ prior to metastable decomposition.  相似文献   

19.
The abundant [C4H5O]+ (m/z 69) ions found in the 70 eV mass spectra of a series of acetylenic, allenylic and unsaturated cyclic ethers are shown to have the following structures: HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H? OCH3 (e), H2C?C?—OCH3 (f), (g) and H? C?C? CH2—O\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H2 (h). Of these, the cyclic ion g is the most stable: its ion enthalpy (≥ 165 kcal mol?1) is close to that found for the acyclic C3H5\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? O isomers identified in a previous study. Evidence that these four isomeric [C4H5O]+ ions are stable species with lifetimes ≥ 10?5 s is obtained from their collisional activation spectra, the shape of the metastable peaks and the associated kinetic energy release values for the common loss of CO, thermochemical information and analysis of deuterium and carbon-13 labelled precursor molecules. It is further shown that loss of X? from ethers of the type X? C?C? CH2OCH3 involves isomerization into energy rich allenyl type ions [(X)HC?C?CHOCH3]+˙ . These ions undergo loss of X? by simple bond cleavage, yielding, e type product ions, when the C? X bond strength is relatively low (X?I, Br). When X?Cl and especially CH3 or H, X? is only lost after rearrangement yielding the cyclic product ion g. The mechanism for this cyclization reaction is related to that proposed in a previous study for the ester→ acid isomerization in the molecular ions of the esters of α, β-unsaturated carboxylic acids.  相似文献   

20.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号