首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The appropriateness of the use of the counterpoise correction for the basis set superposition error in SCF calculations of the interaction energies for pairs of aliphatic amino acids is analyzed in this paper. Our results show that for this type of molecule where the magnitude of the basis set superposition error can become quite big, the use of the counterpoise method provides interaction energies in good agreement with near Hartree-Fock values. The inaccuracies associated with the counterpoise method are much less important compared with the basis set superposition error itself. It is shown that the use of a well-balanced minimal basis set together with the counterpoise method is a good compromise (quality versus computational cost) for calculating interaction energies in systems involving molecules of biological interest.  相似文献   

2.
It is demonstrated that relatively large geometrical changes make Emsley et al.'s assumption (J Am Chem Soc (1978) 100:3303) on the counterpoise correction for the basis set superposition error including the fragment relaxation terms unacceptable. Received: 23 September 1997 / Accepted: 31 October 1997  相似文献   

3.
4.
It is shown that the conjecture that the total energy for a given molecular or supermolecular system is affected by basis set superposition error (BSSE) leads to inconsistent results. While the calculations of interaction energies, dissociation energies, or energy barriers depend on the fragments (reactants, products) involved in their definitions and, consequently, are affected by BSSE, the total energies of molecular or supermolecular systems do not depend on any virtual fragment partition and are, therefore, BSSE free. Contribution to the Serafin Fraga Memorial Issue.  相似文献   

5.
The H2O + H2O, the NH3 + NH3, the BH3 + H2O and the Ne + Ne systems have been studied in the supermolecule approach, using several medium sized basis sets (especially the so-called MIDI basis set). The calculations have been carried out by the use of localized molecular orbitals (LMOs).

The dispersion interaction energies have been computed by a new method (Kozmutza and Kapuy; Int. J. Quantum Chem., 38 (1990) 665), whose essence lies in the use of LMO contributions at the correlated level.

The method proposed seems to be useful for the H2O + H2O, the NH3 + NH3, and the Ne + Ne systems at different intermolecular distances, using the MIDI basis, but fails in describing correctly the correlation energy for the BH3 + H2O system.  相似文献   


6.
The relation between the so called basis set superposition error and intramolecular vibrational frequencies calculated at the Hartree Fock SCF level of approximation was investigated. A linear conformation of HF dimer was chosen as test system for the investigation. It was found that the direct basis set superposition error for the studied system is rather small. It was further found that the shifts are mainly determined by the geometry parameters of the system. AcknowledgementsJ. M. H.-R. wishes to thank the Ministerio de Educación, Cultura y Deporte for the award of a research grant.  相似文献   

7.
Basis set superposition error (BSSE) is a significant contributor to errors in quantum-based energy functions, especially for large chemical systems with many molecular contacts such as folded proteins and protein-ligand complexes. While the counterpoise method has become a standard procedure for correcting intermolecular BSSE, most current approaches to correcting intramolecular BSSE are simply fragment-based analogues of the counterpoise method which require many (two times the number of fragments) additional quantum calculations in their application. We propose that magnitudes of both forms of BSSE can be quickly estimated by dividing a system into interacting fragments, estimating each fragment's contribution to the overall BSSE with a simple statistical model, and then propagating these errors throughout the entire system. Such a method requires no additional quantum calculations, but rather only an analysis of the system's interacting fragments. The method is described herein and is applied to a protein-ligand system, a small helical protein, and a set of native and decoy protein folds.  相似文献   

8.
《Chemical physics letters》1987,136(2):115-121
Special SCF LCAO MO type equations are derived, permitting “supermolecule” calculations for intermolecular interactions, excluding basis set superposition error (BSSE) from the beginning on the basis of the “chemical Hamiltonian approach”. (No additional “monomer” calculations are necessary to correct for BSSE.) The formalism excluding the BSSE results in a non-Hermitean Fock matrix; an algorithm is proposed to obtain the required molecular orbitals, in which no integral transformation is needed.  相似文献   

9.
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections.  相似文献   

10.
 For the intermolecular interaction energies of ion-water clusters [OH(H2O) n (n=1,2), F(H2O), Cl(H2O), H3O+(H2O) n (n=1,2), and NH4 +(H2O) n (n=1,2)] calculated with correlation-consistent basis sets at MP2, MP4, QCISD(T), and CCSD(T) levels, the basis set superposition error is nearly zero in the complete basis set (CBS) limit. That is, the counterpoise-uncorrected intermolecular interaction energies are nearly equal to the counterpoise-corrected intermolecular interaction energies in the CBS limit. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are more reliable than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable. Received: 14 March 2001 / Accepted: 25 April 2001 / Published online: 9 August 2001  相似文献   

11.
《Chemical physics letters》1987,140(4):338-344
Both the SCF and MP2 basis set superposition error (BSSE) calculated around a molecule of HF are strongly distance-dependent but nearly isotropic, with the highest degree of unsaturation centered along the HF bond. The secondary BSSE ( in the dipole moment), on the other hand, is highly anisotropic with larger effects identified near the F atom. Calculations on H3N-HF indicate that some cancellation may occur between the secondary BSSEs of the two subunits but that nonetheless, correction of this error is important in forming a proper picture of electronic rearrangements in molecular complexes.  相似文献   

12.
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.  相似文献   

13.
To reduce the basis set incompleteness of the complete-active-space self-consistent field (CASSCF) wave function and energy we develop a second-order perturbation correction due to single excitations to complete set of unoccupied states. Other than the one- and two-electron integrals, only one- and two-particle reduced density matrices are required to compute the correction, denoted as [2](S). Benchmark calculations on prototypical ground-state bond-breaking problems show that only the aug-cc-pVXZ basis is needed with the [2](S) correction to match the accuracy of CASSCF energies of the aug-cc-pV(X+1)Z quality.  相似文献   

14.
In the current practice of quantum chemistry, it is not clear whether corrections for basis set superposition errors should be applied to the calculation of potential energy curves, in order to improve agreement with experimental data. To examine this question, spectroscopic parameters derived from theoretical potential curves are reported for the homonuclear diatomics C2, N2, O2, and F2, using a configuration interaction method. Three different basis sets were used, including double zeta plus polarization, triple zeta plus double polarization, and double zeta polarization augmented by bond functions. The bond function basis sets, which were optimized in the preceding paper to obtain accurate dissociation energies, also gave the most accurate parameters. The potential curves were then corrected for basis set superposition error using the counterpoise correction, and the spectroscopic parameters were computed again. The BSSE-corrected curves showed worse agreement with experiment for all properties than the original (uncorrected) curves. The reasons for this finding are discussed. In addition to the numerical results, some problems in the application of the BSSE correction to basis sets containing bond functions are shown. In particular, there is an overcounting of the lowering due to the bond functions, regardless of which type of correction is applied. Also, genuine BSSE affects cannot be separated from energy-lowering effects due to basis set incompleteness, and we postulate that it is the latter which is strongly dominant in the calculation of covalent potential curves. Based on these arguments, two conclusions follow: (1) application of BSSE corrections to potential curves should not be routinely applied in situations where the bonding is strong, and (2) appropriate use of bond functions can lead to systematic improvement in the quality of potential curves.  相似文献   

15.
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP.  相似文献   

16.
Based on the all-valence ZDO SCF approximation a procedure for estimating the basis set superposition error (BSSE ) in semiempirical CNDO /INDO methods has been proposed. The results of the calculation show that the BSSE effect may improve the results obtained from the standard CNDO /INDO supermolecule calculation. The estimated BSSE effect enables one to explain some recently reported artificial structures for water and ethylene dimers.  相似文献   

17.
The intermolecular interaction energies of the deprotonated hydrogen-bonded complexes F(-)(HF), F(-)(H(2)O), F(-)(NH(3)), Cl(-)(HF), SH(-)(HF), H(2)P(-)(HF), OH(-)(H(2)O), OH(-)(H(2)O)(2), OH(-)(NH(3)), Cl(-)(H(2)O), SH(-)(H(2)O), H(2)P(-)(H(2)O), Cl(-)(NH(3)), SH(-)(NH(3)), H(2)P(-)(NH(3)), Cl(-)(HCl), Cl(-)(H(2)S), Cl(-)(PH(3)), SH(-)(H(2)S), SH(-)(PH(3)), and H(2)P(-)(PH(3)) were calculated with correlation consistent basis sets at the MP2, MP4, QCISD(T), and CCSD(T) levels. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are closer to the complete basis set limit than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies obtained at the MP2/aug-cc-pVDZ level of theory are close to the interaction energies obtained at the extrapolated complete basis set limit in most of the complexes. Also, we investigate the accuracy of the other levels.  相似文献   

18.
Recently, two different but conceptually similar basis set superposition error (BSSE) free second‐order perturbation theoretical schemes were developed by us that are being based on the chemical Hamiltonian approach (CHA). Using these CHA‐MP2 and CHA‐PT2 methods, a comparison is made between the a posteriori and a priori BSSE correction schemes at the correlated level. Sample calculations are presented for four hydrogen bonded complexes (HFH3N, HFH2O, H2SHF, and H2OHCl) in nine different basis sets (from 6–31G to TZV**++). The results show that the BSSE content is very significant in the interaction energy if electron correlation is accounted for, so removing the BSSE is very important. The differences of the two perturbational theories discussed are connected solely with the different one electron orbital sets used for building up the unperturbed single determinant wave function. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 274–283, 1999  相似文献   

19.
《Chemical physics letters》1986,128(4):358-362
As preliminary numerical examples, we report some calculations on intermolecular interactions using a new method of perturbation theory introduced recently. The He…He, LiH…LiH and water—water interactions are studied with small basis sets. The essential feature of the method is that it eliminates basis set superposition errors without any a posteriori collection. Within the range of applicability of the perturbational treatment, the results may be superior to standard vibrational calculations which suffer from large basis set superposition errors.  相似文献   

20.
The impact of basis set superposition error (BSSE) upon molecular properties determined using the density functionals B3LYP, B3PW91, B3P86, BLYP, BPW91, and BP86 in combination with the correlation consistent basis sets [cc-pVnZ, where n = D(2), T(3), Q(4), and 5] for a set of first-row closed-shell molecules has been examined. Correcting for BSSE enables the irregular convergence behavior in molecular properties such as dissociation energies with respect to increasing basis set size, noted in earlier studies, to be improved. However, for some molecules and functional combinations, BSSE correction alone does not improve the irregular convergence behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号