首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A monomer having dibenzothiophene moiety, 2-vinyldibenzothiophene (1), was prepared by the Ni-catalyzed cross-coupling reaction of vinyl bromide with the Grignard reagent of 2-bromodibenzothiophene. The radical homopolymerization of 1 and the copolymerization with styrene were carried out at 60°C in toluene (1.0M) for 20 h using AIBN (5 mol %) as an initiator to obtain the corresponding polymers in high yields. Thermal analyses of the copolymers showed that both 10% weight loss and glass transition temperatures increase when increasing the content of 1 unit. The monomer reactivity ratio was evaluated as r1 = 2.55 (1) and r2 = 0.16 (styrene). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2813–2819, 1997  相似文献   

3.
N-acryloyl-N′-benzoylurea ( 1 ) was prepared and its radical homopolymerization and copolymerization with styrene were carried out. 1 was synthesized yield by the reaction of benzoylisocyanate and acrylamide in tetrahydrofuran in 78%. Radical polymerization of 1 was carried out at 60 or 80°C in DMF (0.1-2.5M) for 5 h in a sealed tube using AIBN (3 mol %) or BPO (3 mol %) as initiators to obtain poly(N′-acryloyl-N′-benzoylurea) ( 2 ) as a methanol-insoluble part in good yield (75–82%) independent of concentration. Number-average molecular weights of 2 were 2700–91,900. Furthermore, copolymerization of 1 with styrene was carried out in various feed ratios to confirm the alternating character in the copolymerization (r1r2 = 0.21) and Q, e values of 1 were evaluated as 0.52, 1.16, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The radical polymerization of N-acryloyl-N′-(p-tolylsulfonyl)urea ( 2 ), prepared easily by the reaction of p-toluenesulfonyl isocyanate with acrylamide, was carried out in DMF, DMSO, or NMP at 60°C by use of AIBN as an initiator to give a polymer 3 in a good yield. Copolymerization parameters of 2 were evaluated by the copolymerization with MMA. Polymer 3 was readily hydrolyzed in an aqueous NaOH solution (1M) at room temperature to give poly(acrylic acid). The reason for the higher activity for hydrolysis of 3 compared to an ordinary amide is discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1515–1519, 1998  相似文献   

5.
A styrene‐based monomer having a five‐membered cyclic dithiocarbonate structure, 4‐vinylbenzyl 1,3‐oxathiolane‐2‐thione‐5‐ylmethyl ether (VBTE), was synthesized from 4‐vinylbenzyl glycidyl ether (VBGE) and carbon disulfide in the presence of lithium bromide in 86% yield. Radical polymerization of VBTE in dimethyl sulfoxide by 2,2′‐azobisisobutyronitrile was carried out at 60 °C to afford the corresponding the polymer, polyVBTE, in 64% yield. PolyVBTE with number‐averaged molecular weight higher than 31,000 was obtained. The glass transition temperature (Tg) and 5 wt % decomposition temperature (Td5) of the polyVBTE were evaluated to be 66 and 264 °C under nitrogen atmosphere by differential scanning calorimetry and thermal gravimetry analysis, respectively. It was confirmed that a polymer consisting of the same VBTE repeating unit could also be obtained via polymer reaction, that is, a lithium bromide‐catalyzed addition of carbon disulfide to a polyVBGE prepared from a radical polymerization of VBGE. Copolymerization of VBTE and styrene with various compositions efficiently gave copolymers of VBTE and styrene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
A styrene derivative ( 1 ) bearing kojic acid moieties was prepared by the base-catalyzed reaction of p-formylstyrene with kojic acid. Hydroxyl groups in 1 were subjected to acetylation. Although 1 did not undergo radical polymerization, the acetylated styrene derivative ( 2 ) showed good radical homo- and copolymerizability. For instance, a polymer having the number average molecular weight (Mn) of 60,000 was obtained in almost quantitative yield (97%) by the polymerization of 2 in chloroform (1.5 M) at 60°C for 36 h using α,α′-azobis(isobutyronitrile) (AIBN, 5 mol %) as an initiator. Under similar conditions, copolymers of 2 with styrene were also obtained in high yield. By partial deacetylation of the copolymer with a triethylamine catalyst, a copolymer containing α-hydroxyketone structures originated from kojic acid moieties was successfully regenerated. The deacetylated copolymer can be crosslinked by complexation with metal salts such as Al3+. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
We carried out radical homopolymerization and copolymerization in various kinds of solvents at 60°C by using diisopropyl fumarate (DiPF) and methyl methacrylate (MMA) as electron-accepting polar monomers and styrene (St) and vinyl benzoate (VB) as electron-donating monomers. The highest polymerization rate was observed in the polar and electron-pair accepting solvents, such as 2,2,2-trifluoroethanol for the homopolymerization and copolymerization of these monomers. It has been revealed that the polymerization rate is correlated to the electron-pair–accepting property of the solvent used, rather than the polarity in the linear free energy relationship. We have demonstrated the validity of the acceptor number as the index for interpreting the interaction of the solvent with the monomer and the propagating chain end. The monomer reactivity ratios were determined for the St–DiPF, VB–DiPF, and St–MMA copolymerizations. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2803–2814, 1999  相似文献   

8.
This work deals with design of maleimide monomer toward more precise control of alternating sequence for radical copolymerization with styrene. Crucial in this study is sequence analysis by MALDI‐TOF‐MS for resultant copolymers that was obtained via ruthenium‐catalyzed living radical copolymerization with a malonate‐based alkyl halide initiator showing selective initiation ability. The copolymers of a simple N‐alkyl maleimide [e.g., N‐ethyl maleimide (EMI)] with styrene gave complicated peak patterns for the MALDI‐TOF‐MS spectra indicating low degree of alternating sequence, in contrary to expectation from the reactivity ratios (almost zero). A simple substitution of methyl group (CH3) of EMI with trifluoromethyl (CF3: CF3‐MI) made the peak patterns much simpler giving the copolymer with higher alternating sequence. More interestingly, the peak interval of the copolymer at earlier polymerization stage was equal to sum of the molecular weights of CF3‐MI and styrene, suggesting possibility of the pair propagation of the monomers. Indeed, 1H NMR analyses of the mixture of maleimide with styrene suggested stronger interaction of CF3‐MI than EMI. Based on the results, maleimide derivatives carrying a substituent‐designable electron‐withdrawing group [ROC(?O)N–: R = substituent] were newly designed toward incorporation of functional side chains. They also gave higher alternating sequence for the copolymerization with styrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 367–375  相似文献   

9.
Oxoaminium salt ( 1 ), derived from 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 2 ) by one-electron oxidation, could be an initiator for cationic polymerization of vinyl monomers such as isobutyl vinyl ether (IBVE), 2,3-dihydrofuran, p-methoxystyrene, N-vinyl pyrrolidone, etc., to give the corresponding polymers, when 1 had a low nucleophilic counter anion. Formation of the adducts of 1 and IBVE as well as 1H-NMR and IR data suggested the formation of polymers containing N? O? C structure as the polymer head group. In the polymerization of IBVE, the effects of solvent and concentration of 1 were little observed, however the polymerization rate was dependent on temperature. Furthermore, the thermal reaction of the polymers obtained, which were regarded as prepolymers for block copolymerization and polymeric initiators for radical polymerization, was studied. For example, poly(2-benzylidene-1,3-dioxane) obtained by the polymerization of 2-benzylidene-1,3-dioxane with oxoaminium hexafluoroantimonate ( 1, X = SbF6) was employed as an initiator for radical polymerization of MMA to give its block copolymer with PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Radical polymerizations of methyl methacrylate (MMA), styrene (St), and vinyl acetate (VAc) were carried out in the presence of a novel phenyl acrylate derivative bearing a hindered phenol moiety (HPA). It has been clarified that HPA acts as a retarder and inhibitor for the polymerizations of MMA and VAc, respectively, and that in the polymerization of St it behaves as a monomer to give a copolymer. These additive effects were interpreted in terms of intramolecular transfer of the phenolic hydrogen in competition with propagation of the HPA radical to monomers. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
New hybrid vinyl monomers with both cationic- and radical-polymerizable vinyl groups were synthesized by the reaction of bis[1(chloromethyl)-2-(vinyloxy)ethyl]terephthalate ( 3 ) with unsaturated carboxylic acids using 1,8-diazabicyclo[5.4.0]-undecene-7 (DBU) as a base. The reaction of 3 with methacrylic acid 4a was carried out using DBU in DMSO at 70°C for 24 h to give an 86% yield of the hybrid vinyl monomer ( 5a ). Polycondensation of 3 with unsaturated dicarboxylic acids was also performed using DBU to give hybrid vinyl oligomers with radical polymerizable C (DOUBLE BOND) C groups (VR) in the main chain and cationic polymerizable vinyl ether moieties (VC) on the side chain. The photopolymerization of these hybrid vinyl compounds proceeded smoothly in bulk using either a cationic photoinitiator such as a sulfonium salt or a radical photoinitiator such as acyl phosphine oxide under UV irradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Single-electron-transfer (SET) and two-electron-transfer reactions and their mechanisms were examined in the anionic polymerization of vinyl monomers and in the ring-opening polymerization of lactones. SET resulted in the formation of radical anions or enolates at the initiation step of styrene or lactone polymerization with naphthalene sodium as a catalyst. However, alkali-metal supramolecular complexes such as M+crown–M (M = Na or K) were able to transfer two electrons to both these monomers to form carbanions as reactive intermediates. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2158–2165, 2002  相似文献   

13.
The cobalt-mediated radical polymerization of vinyl acetate was extended to copolymerization with 1-alkenes (ethylene or 1-octene). In agreement with the low amount of 1-alkene that could be incorporated into the copolymer, a gradient structure was predictable, but a rather low polydispersity was observed. A poly(vinyl acetate)-b-poly(octene) copolymer was also successfully synthesized, leading to a poly (vinyl alcohol)-b-poly(octene) amphiphilic copolymer upon the methanolysis of the poly (vinyl acetate) block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2532–2542, 2007  相似文献   

14.
Homopolymerization of styrene and methyl methacrylate was carried out at 60–130°C in the presence of a mono-captodatively (cd) substituted ethane bearing nitrile and ethylsulfenyl substituents on the same carbon atom. It was found that the cd-ethane accelerated both styrene and methyl methacrylate polymerizations with no induction period, but the polymerization mode of methyl methacrylate was different from that of styrene. The polymerization rate of styrene was proportional to the 0.46th power of the cd-ethane concentration. However, the cd-ethane produced a reversible radical termination in the case of methyl methacrylate. The mechanism of both polymerizations is discussed in terms of the kinetic and ESR data. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
16.
In situ ATRPs of MMA, St in the presence of TD catalyzed by FeCl3/PPh3 and CuBr2/bpy have been studied, respectively. The results showed that the initiator Et2NCS2X (X = Cl or Br) and catalyst FeCl2 or CuBr were formed in situ from the initiating components and the polymerization exhibited living radical polymerization characteristics. In the case of St polymerization with TD/CuBr/bpy initiating system, an inverse ATRP was observed.  相似文献   

17.
Novel vinyl- and isopropenyl-substituted cyclopentadienyl complexes of hafnium(IV), [C5H4(CR=CH2)]2HfCl2[R = H (5), CH3 (6)], were prepared and characterized. The organometallic monomers obtained were shown to undergo radical or anionic homopolymerization. Copolymerization of these metallocenes with styrene was performed. The potential applications of the metal polymers in question were considered.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 242–246, January, 2005.  相似文献   

18.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   

19.
A styrene‐based monomer having a five‐membered cyclic carbonate structure, 4‐vinylbenzyl 2,5‐dioxoran‐3‐ylmethyl ether (VBCE), was prepared by lithium bromide‐catalyzed addition of carbon dioxide to 4‐vinylbenxyl glycidyl ether (VBGE). Radical polymerization of the obtained VBCE was carried out using 2,2′‐azobisisobutyronitrile as an initiator. PolyVBCE with number‐averaged molecular weight higher than 13,800 was obtained by a solution polymerization in N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethyl sulfoxide, and methyl ethyl ketone. The glass transition temperature and 5 wt % decomposition temperature of the polyVBCE were determined to be 52 and 305 °C by differential scanning calorimetry and thermal gravimetry analysis, respectively. It was confirmed that a polymer consisting of the same VBCE repeating unit can be also obtained via chemical modification of polyVBGE, that is, a lithium‐bromide‐catalyzed addition of carbon dioxide to a polyVBGE prepared from a radical polymerization of VBGE. Further copolymerization of VBCE with styrene gave the corresponding copolymer in a high yield. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Three new vinyl ether monomers containing phosphonate moieties were synthesized from transetherification reaction. We showed that the yield was dependent on the spacer length between the vinyl oxy group and the phosphonate moieties: when the spacer is a single methylene side reaction may occur, leading to the formation of acetal compounds. Free‐radical copolymerizations of phosphonate‐containing vinyl ether monomers with maleic anhydride were carried out, leading to alternated copolymers of rather low molecular weights (from 1000 to 7000 g/mol). Both gel permeation chromatography and 31P NMR analyses enhanced possible intramolecular transfer reactions occurring from the phosphonate moieties. Kinetic investigation showed that the electron‐withdrawing character of the phosphonate moieties tends to decrease the rate of copolymerization. Nevertheless, almost complete monomers conversion was reached after 30 min of reaction with dimethyl vinyloxyethylphosphonate (VEC2PMe). Then, radical copolymerization of VEC2PMe with a series of electron‐accepting monomers, that is, dibutyl maleate, dibutylitaconate, itaconic anhydride, butyl maleimide, and methyl maleimide, led to a series of alternated copolymers. From kinetic investigation, we showed that the higher the electron‐accepting effect, the faster the vinyl ether consumption and the higher the molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号