首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of new alkene monomers [MS3BDBEn, n=1-3] containing 4-oligo (ethylene oxide) monomethyl ether 4-biphenyl ether carboxyl benzoate as terminal groups were synthesized. These polymers were prepared by grafting these monomers onto the poly (methylhydrosilox-ane) (PMHS) backbone. The transition temperatures, liquid crystalline textures, and thermal stability of the polysiloxane polymers have been determined by thermal data, by optical texture, and by X-ray diffraction patterns. Polymers PS3BDBEn showed smectic or smectic and nematic phases which were not analogous to their precursor nematic monomers. The terminal length of the polymers affects not only the mesophase transition temperatures but also the layer-spacing length (d1) and the side-chain distance (d2). The long- and short-range orders can remain to some extent above the isotropization temperature and below the melting point. The polymer PS3BDBE3 decomposed in air 20°C above the isotropization temperature and lost its short range orders as detected by the X-ray diffraction analysis.  相似文献   

2.
A series of new side-chain liquid-crystalline copolymers has been prepared, and the thermal properties of the individual copolymers have been determined. These copolymers are derived from atactic polystyrene and contain both 4-methoxyazobenzene and 4-nitroazobenzene mesogens; these are linked through octyl spacers to the polystyrene backbone. All the copolymers exhibit a smectic phase that has been assigned smectic A on the basis of polarizing microscopy and x-ray diffraction studies. The glass transition temperatures of the polymers exhibit a linear dependence on composition, whereas the clearing temperatures and the associated entropies show significant deviations from such behavior. The smecticisotropic transition temperatures of the copolymers are higher than those of the composition-weighted averages for the corresponding homopolymers, whereas the entropies of transition are lower than expected. X-ray diffraction studies of fiber samples revealed that the director of the mesophase is oriented perpendicular to the fiber axis. The liquid-crystalline polystyrene containing 25 mol % nitro-substituted mesogen shows an unusual SA-phase WAXS pattern. The copolymers were investigated further by 13C CP/MAS NMR spectroscopy, and the observed changes in the spectra are analyzed in terms of chemical composition and local electronic environment. The application of the interrupted decoupling technique revealed that the spacer contains a number of gauche defects. These observations lead us to suggest possible microstructural arrangements in the smectic phase. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Electro-optic and polarization reversal measurements were performed on a side-chain polymer exhibiting a chiral smectic phase. Based on the observed electro-optic and current responses, we discuss the possibility of an antiferroelectric structure in the polymer. In order to establish a model for the observed behavior, a detailed comparison with the properties of the low molar mass antiferroelectric substance MHPOBC was made. The birefringence modulation in the chiral smectic polymer, originating from the field-induced antiferroelectric-to-ferroelectric transition, is analyzed for the case of a randomly oriented sample. The result shows that the coincidence of birefringence modulation and polarization current peaks is strong evidence for the existence of antiferroelectric order in the smectic layers. Such coincidence was observed both for MHPOBC and the chiral side-chain polyacrylate.  相似文献   

4.
徐懋 《高分子科学》1999,(6):529-535
The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropi-zation and liquid-crystallization transitions were studied by means of polarizing microscopy. These tran-sitions were found to be composed of the initiation of a new phase at local places of the old phase matrix andthe growth of the new phase domains. The kinetics of the liquid-crystallization of the polymer from anisotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can bedescribed by the Avrami equation. The values of the Avrami exponent were found to be around 2.6, which islower than the value usually obtained for crystallization transition of polymers, but larger than that reportedfor liquid-crystallization transition of main-chain polymers. These results may indicate the difference ingrowth geometry of new phase during transition between crystallization and liquid-crystallization in generaland between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquid-crystallization of the used side-chain polymethacrylate may occur at small undercoolings with hightransformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while thecrystallization of polymers can only proceed at large undercoolings. These phenomena can be explained bythe idea that the surface free energy of nucleus during liquid-crystallization transition is less than that forcrystallization, and evidence was obtained from analysis of the temperature dependence of the transformationrate.  相似文献   

5.
Abstract

Three acrylate side-chain polymers in which the mesogenic moieties are based on the 4-n-alkoxyphenyl-4′-(4″-methylhexyloxy) benzoates have been characterized by differential scanning calorimetry, optical microscopy and X-ray diffraction. For shorter flexible spacers (n = 2) both smectic A and C* phases are observed thus making this polymer interesting for the fabrication of electro-optical devices based on ferroelectric properties (a smectic A phase is required for alignment purposes). For longer flexible spacers, (n = 6, 11) only the smectic A phase remains.  相似文献   

6.
The chiral methacrylate monomers with photosensitive azobenzene group possessing the orthogonal smectic A* and tilted smectic C* (Sm-C*) phases have been synthesised and characterised. The monomers have been used as functional side chains for the design of corresponding polymethacrylates. X-ray diffraction has been applied to elucidate the structure and phase behaviour of liquid-crystalline side-chain polymethacrylates with azobenzene-containing central core, chiral fragments and aliphatic spacers and tails of different length. X-ray patterns of polymethacrylates oriented fibres impose the tilted Sm-C* order as a basic structure of these materials. This is complemented by a regular pattern of small-angle diffuse spots, which implies complex positional order on the local scale and serves as a precursor for the formation of a columnar phase. The increase of the total length of the aliphatic tail and spacer of the side-chain fragments leads to formation of the tilted columnar phase (Coltilt*) with two-dimensional monoclinic lattice. For the polymer containing 10 methylene units in both, spacer and aliphatic tail, the Coltilt* precedes the formation of the Sm-C* phase. The observed structural changes are explained as due to coupling between the smectic ordering of the mesogenic side groups and the polymer backbone conformation.  相似文献   

7.
Three acrylate side-chain polymers in which the mesogenic moieties are based on the 4-n-alkoxyphenyl-4'-(4'-methylhexyloxy) benzoates have been characterized by differential scanning calorimetry, optical microscopy and X-ray diffraction. For shorter flexible spacers (n = 2) both smectic A and C* phases are observed thus making this polymer interesting for the fabrication of electro-optical devices based on ferroelectric properties (a smectic A phase is required for alignment purposes). For longer flexible spacers, (n = 6, 11) only the smectic A phase remains.  相似文献   

8.
用POM、DSC和WAXD研究了十一烯酸胆甾酯及含胆甾介晶基元侧链聚硅氧烷的液晶行为。单体呈现明甾相的油条及螺旋织构,单致变近晶相的扇形织构和固-固相变。均聚物显示SA相的扇形织构。  相似文献   

9.
The smectic layer spacing of two homologous series of ferroelectric liquid crystal compounds was characterized by small-angle x-ray diffraction and different degrees of smectic layer shrinkage on cooling from the SmA* into the SmC* phase were observed. The smectic A*-smectic C* phase transition was further studied by measuring the thermal and electric field effects on the optical tilt angle and the electric polarization. With decreasing length of the alkyl terminal chain the phase transition changes from tricritical exhibiting high layer shrinkage to a pure second-order transition with almost no layer shrinkage. This is explained by the increased one-dimensional translational order of the smectic layers, which seems to promote the "de Vries"-type [Mol. Cryst. Liq. Cryst. 41, 27 (1977)] smectic A*-C* phase transition with no or little layer shrinkage.  相似文献   

10.
11.
The conformation of the main-chain (backbone) of a combined main-chain/side-chain liquid crystalline polymer has been qualitatively determined by small angle neutron scattering in the oriented nematic, the smectic A and the smectic C phases. The polymer backbone presents only a weak anisotropy, of prolate shape, in the nematic and the smectic C phases. A stronger reorientation of the backbones in the direction of the applied magnetic field is measured for the SA phase. However, this anisotropy remains small compared to the stretching of a main-chain liquid crystal polymer and the smectic structure results apparently from side-chain ordering. On the other hand, hydrodynamic measurements show that the combined polymer, in solvent, is as flexible as a polystyrene chain. This result is compatible with an explanation for the weak observed anisotropy.  相似文献   

12.
The orientation relaxation behavior of a stretched side-chain liquid crystalline polymer (SCLCP) on a poly(vinyl alcohol) (PVA) film under strain was investigated through infrared dichroism at temperatures near its phase transitions. We found a reorientation of the aligned mesogens over the smectic to nematic transition of the SCLCP, changing the alignment from an initially, mechanically induced perpendicular orientation to a parallel orientation with respect to the film-stretching direction. This reorientation was found to be irreversible during subsequent nematic to smectic transition, with the parallel orientation preserved. We show that it is possible to stop the reorientation process by cooling the SCLCP back to its smectic phase just before the change in the alignment direction. Moreover, this interruption can result in a stable, zero macroscopic orientation of the mesogens in the stretched SCLCP, and a subsequent heating to the smectic-nematic transition allows the reorientation process to restart and to be completed. We discuss the possible mechanisms for this mesophase transition-induced reorientation and the factors that could influence the process. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1491–1499, 1997  相似文献   

13.
The morphology of thermoreversible polyacrylonitrile–propylene carbonate (PAN-PC) gels was examined using solid-state carbon-13 nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction. Following complete dissolution of the polymer at elevated temperature and cooling of the concentrated PAN-PC solutions, a gel was formed. The PAN-PC gels consisted of regions of mobile polymer chains, rich in PC, “cross-linked” by regions of rigid polymer. The mobile regions of the gels showed solution-type NMR spectra with resolution of tacticity effects. The rigid component detected by NMR would correspond to the crysttallites detected previously by x-ray diffraction. Wide-angle x-ray diffractograms of the gels showed different peaks when compared with the dry polymer powder. After solvent extraction and drying of the gel, the diffractogram reverted to that of the original dry powder. This new result is the strongest evidence to support the view advanced earlier that the new peaks found in the diffraction pattern of the wet gels arises from solvated polymer crystallites rather than from ordinary polymer crystallites. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Liquid crystal displays are a subject of intense research interest because of their application to high definition display devices. Recently, polymer stabilized ferroelectric liquid crystals (PSFLCs) have been investigated due to the enhanced electro-optic properties of FLCs. We have utilized thiol-ene photopolymerizations to form a PSFLC system. Thiol-ene photopolymerizations are radical reactions, which proceed via a step growth reaction mechanism. During the polymerization, the polymer network structure is trapped into place due to the rapid transition from low molecular mass monomers and oligomers to high molecular mass polymer. This aspect is evidenced by phase transition data for the FLC, which indicates that the monomer and polymer are not phase separated from the FLC. Infrared dichroism shows that both monomer and polymer are ordered in parallel with the smectic layers of the FLC. Small angle X-ray scattering (SAXS) data show that both monomer and polymer are swelling the smectic layers. Thus, a polymer nanostructure is produced that serves as an ordered, stabilizing host for the FLC.  相似文献   

15.
《Liquid crystals》1998,25(5):631-638
The layer structure that occurs in an achiral smectic C liquid crystal device has been investigated as a function of temperature using the small angle X-ray scattering facility at the Synchrotron Radiation Source, Daresbury UK. The material studied shows a direct phase transition from the nematic to the smectic C phase. The layer structure proposed on the basis of the diffraction data is relatively complex, containing regions with chevron, quasi-bookshelf and curved structures. A rationale for the formation of the structure is presented, relying on both the phase transition characteristics of the system and the anisotropic layer elasticity in the smectic C phase. Qualitative analysis indicates that the layer constant A is greater than A 21, i.e. layer flexing is easier perpendicular to the plane of the director than parallel to it. It is also demonstrated that the surface chevron angle is several degrees different from the tilt angle of the smectic C phase at temperatures well below the smectic C to nematic phase transition. 12  相似文献   

16.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

17.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

18.
19.
A detailed molecular dynamics simulation study is described for a polysiloxane side chain liquid crystal polymer (SCLCP). The simulations use a coarse-grained model composed of a combination of isotropic and anisotropic interaction sites. On cooling from a fully isotropic polymer melt, we see spontaneous microphase separation into polymer-rich and mesogen-rich regions. Upon application of a small aligning potential during cooling, the structures that form on microphase separation anneal to produce a smectic-A phase in which the polymer backbone is largely confined between the smectic layers. Several independent quenches from the melt are described that vary in the strength of the aligning potential and the degree of cooling. In each quench, defects were found where the backbone chains hop from one backbone-rich region to the next by tunneling through the mesogenic layers. As expected, the number of such defects is found to depend strongly on the rate of cooling. In the vicinity of such a defect, the smectic-A structure of the mesogen-rich layers is disrupted to give nematiclike ordering. Additionally, several extensive annealing runs of approximately 40 ns duration have been carried out at the point of microphase separation. During annealing the polymer backbone is seen to be slowly excluded from the mesogenic layers and lie perpendicular to the smectic-A director. These observations agree with previous assumptions about the structure of a SCLCP and with interpretations of x-ray diffraction and small angle neutron scattering data. The flexible alkyl spacers, which link the backbone to the mesogens, are found to form sublayers around the backbone layer.  相似文献   

20.
The relaxation behavior of poly(tetra ethylene oxide terephthaloyl-bis-4-oxybenzoate), PTETOB, was analyzed by thermally stimulated depolarization currents, TSDC, and dynamic mechanical techniques, DMTA, and the results compared with those obtained by differential scanning calcrimetry, thermo-optical analysis, and x-ray diffraction. In the low temperature region, ?173–30°C, three main transitions were observed and assigned to the γ relaxation, the glass transition of the mesophase and the glass transition temperature of the amorphous material. The complex behavior observed in the range 110–160°C was as signed to a crystal-crystal transition which competed with the formation of a mesophase and afterward the formation of a smectic A mesophase. At higher temperatures, was observed the transition from the smectic A mesophase to a nematic one, prior to the isotropization temperature. In the TSDC experiments the formation of a permanent electret was detected and the charges trapped in the mesophase were canceled only at the isotropization temperature. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号