首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permeability and solubility coefficients for H2, CO2, O2, CO, N2, and CH4 in polyimides prepared from 6FDA and methyl-substituted phenylenediamines were measured to investigate effects of the substituents on gas permeability and permselectivity. The methyl substituents restrict internal rotation around the bonds between the phenyl rings and the imide rings. The rigidity and nonplanar structure of the polymer chain, and the bulkiness of methyl groups make chain packing inefficient, resulting in increases in both diffusion and solubility coefficients of the gases. Polyimides from tetramethyl-p-phenylenediamine and trimethyl-m-phenylenediamine display very high permeability coefficients and very low permselectivity due to very high diffusion coefficients and very low diffusivity selectivity, as compared with the other polyimides having a similar fraction of free space. This suggests that these polyimides have high fractions of large-size free spaces.  相似文献   

2.
The solubility of CO2 and CH4 in five polyimides was measured at 35.0°C and at pressures up to 10 atm (147 psia). The concentration of the penetrant gases dissolved in the polymers can be represented satisfactorily as a function of penetrant pressure by the “dual-mode sorption” model. The solubility coefficients for CO2 and CH4, S(CO2) and S(CH4), increase in the polyimide order: The magnitude of the solubility coefficients appears to depend primarily on the intermolecular forces between the penetrant gases and the polymers. The values of these coefficients are greater for the polyimides with larger mean interchain spacings, but no one-to-one correspondence appears to exist in this respect. The lower solubility of CO2 in PMDA-4,4'-m-APPS compared with that in the 6FDA polyimides may be due to the lower “excess” free volume of the former polymer. The ratio S (CO2)/S (CH4) varies relatively little for a variety of PMDA and 6FDA polyimides.  相似文献   

3.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

4.
The goal of this work is to explore new polyimide materials that exhibit both high permeability and high selectivity for specific gases. Copolyimides offer the possibility of preparing membranes with gas permeabilities and selectivities not obtainable with homopolyimides. A series of novel fluorinated copolyimides were synthesized with various diamine compositions by chemical imidization in a two-pot procedure. Polyamic acids were prepared by stoichiometric addition of solid dianhydride in portions to the diamine(s). The gas permeation behavior of 2,2′-bis(3,4′-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)-2,6-diamine toluene (2,6-DAT)/1,3-phenylenediamine (mPDA) polyimides was investigated. The physical properties of the copolyimides were characterized by IR, DSC and TGA. The glass transition temperature increased with increase in 2,6-DAT content. All the copolyimides were soluble in most of the common solvents. The gas permeability coefficients decreased with increasing mPDA content. However, the permselectivity of gas pairs such as H2/N2, O2/N2, and CO2/CH4 was enhanced with the incorporation of mPDA moiety. The permeability coefficients of H2, O2, N2, CO2 and CH4 were found to decrease with the increasing order of kinetic diameters of the penetrant gases. 6FDA-2,6-DAT/mPDA (3:1) copolyimide and 6FDA-2,6-DAT polyimide had high separation properties for H2/N2, O2/N2, CO2/CH4. Their H2, O2 and CO2 permeability coefficients were 64.99 Barrer, 5.22 Barrer, 23.87 Barrer and 81.96 Barrer, 8.83 Barrer, 39.59 Barrer, respectively, at 35°C and 0.2 MPa (1 Barrer = 10−10 cm3 (STP)·cm·cm−2·s−1·cmHg−1) and their ideal permselectivities of H2/N2, O2/N2 and CO2/CH4 were 69.61, 6.09, 63.92 and 53.45, 5.76, 57.41, respectively. Moreover, all of the copolyimides studied in this work exhibited similar performance, lying on or above the existing upper bound trade-off lines between permselectivity and permeability. They may be utilized for commercial gas separation membrane materials. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

5.
The permeability of nine different polyimide membranes to H2, N2, O2, CH4, and CO2 has been determined at 35°C and at applied pressures of up to 9 atm. The dianhydride monomers used for the synthesis of the polymides were PMDA and 6FDA, whereas the diamine monomers were ODA, BDAF, and p-PDA. The selectivities of the 6FDA polymides toward CO2 relative to CH4 are higher than those of the PMDA polyimides at comparable CO2 permeabilities. Both types of polyimides exhibit significantly higher CO2/CH4 selectivities than more common glassy polymers, such as cellulose acetate, polysulfone, and polycarbonate. The selectivities of the PMDA and 6FDA polyimides to O2 relative to N2 are of the same magnitude and generally higher than those of common glassy polymers with similar O2 permeabilities. The polymides are more permeable to N2 than to CH4, whereas the opposite is true for many other glassy polymers. Possible factors responsible for the above behavior, such as segmental mobility, mean interchain distance, and formation of charge transfer complexes, are examined. The relevance of the study to the development of more highly gas-selective and permeable membranes for the separation of gas mixtures is also discussed.  相似文献   

6.
Polyimides with large aromatic rings were prepared from 3,6-diaminocarbazole (CDA), N-ethyl-3,6-diaminocarbazole (ECDA), 2,7-diaminofluorene (DAF), 2,7-diaminofluorenon (DAFO), and dimethyl-3,7-diaminodibenzothiophene-5,5-dioxide (DDBT) with 2-bis(2,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). Their physical properties, including gas permeability and permselectivity, were investigated in comparison with those of the related polyimides from 1,3-phenylenediamine (mPD). Glass transition temperatures of the polyimides with large aromatic rings were much higher than those of the mPD-based polyimides as a result of increased rigidity of the former polymer chains. With changing diamine from mPD to the large aromatic diamines, charge transfer (CT) interaction between the moieties of acid anhydride and diamine seems to be enhanced, judging from the red shift of absorption edge of the polyimide films and the red shift of CT excitation band of the 6FDA-based polyimides in solution. Fraction of free space (VF) was a little smaller for the polyimides with large aromatic rings except DDBT than for the mPD-based polyimides, probably because of enhancement in polymer chain-chain interactions as a result of the increased CT interaction. The DDBT-based polyimides had large VF than the mPD-based polyimides because of the nonplanar structure of neighboring dibenzothiophene-5,5-dioxide and imide rings. For the 6FDA-based polyimides, permeability coefficients to H2, O2, N2, CO2, and CH4 were in the order, DAFO < mPD ~ DAF < CDA < ECDA < DDBT. As for the membrane performance for H2/CH4, CO2/CH4, and O2/N2 systems, it is significant to change diamine from mPD to DDBT or CDA, but not to DAF or DAFO. The DDBT-based polyimides were excellent for H2/CH4 and CO2/CH4 separations. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A previously proposed theoretical treatment to elucidate the pressure dependence of gas permeability is improved in order to apply it to polymer-gas systems in which gas dissolution follows the Flory-Huggins equation. Permeation rates of N2, CH4, and CO2 in poly(ethylene-co-vinyl acetate) are measured in the pressure range below 90 atm at 10–40°C, and the effect of pressure on permeability is found for each gas. The data are analyzed using the improved method to estimate the contributions of concentration and hydrostatic pressure to the pressure dependence of permeability. The concentration effect decreases with increasing temperature, whereas the hydrostatic-pressure effect is almost independent of temperature. Crystallinity dependence of the concentration effect is discussed in connection with high-pressure permeation data of other semicrystalline polymers reported elsewhere. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Sorption isotherms of CO2 for ten fluorinated polyimides measured at 35°C and up to about 25 atm are analyzed according to the dual-mode sorption model. Sorption properties for these polyimides are compared with those for other glassy Polymers including unfluorinated polyimides. The glassy polymers with higher glass transition temperatures Tg tend to show greater CO2 sorption. Introduction of a ? C (CF3)2? linkage into the repeat unit of the main chain increases the sorption by 20–80%. For glassy polymers, including the fluorinated and unfluorinated polyimides, the Langmuir affinity constant b and Henry's law solubility constant kD are correlated with the content of functional (carbonyl or sulfonyl) groups [FG], and composite parameter reflecting the magnitude of both [FG] and free-space fraction VF, respectively, with some exceptions. The Langmuir capacity constant CH is correlated with Tg, but there are two correlation lines; one for unfluorinated polyimides and a different one for other glassy polymers including fluorinated polyimides. The slope of the former group is smaller probably because of smaller differences in thermal probably because of smaller differences in thermal expansion coefficients in rubbery and glassy states. Most fluorinated polyimides show greater solubility of CO2 than unfluorinated polyimides and other glassy polymers, because of their larger CH and kD. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Packing density and gas permeability of a three-component copolymide series is presented. The three-component polyimides are prepared a via “stepwise” synthesis procedure that goes through the acid anhydride terminated pre-polymer. The procedure ensures the statistical distribution of segments of the polymers. The polyimide series is composed of contrasting segments: a bulky and rigid hexafluoroisopropylidene-2,2-bis(phthalic acid anhydride)/9,9,-bis(4-aminophenyl)fluorene and a flexible hexafluoroisopropylidene-2-2-bis(phthalic acid anhydride)/2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, with varying segment ratio. Generation of additional free volume by compolymerizing two segments is observed. The permeability of six pure gases—He, H2, N2, O2, CH4, and CO2—to the polymides showed positive deviation from the simple additivity rule of segment weight ratio reflecting the generation of free volume. However, a conflicting result between free volume fraction and gas permeability is observed, which may be due to a difference of the nature of free volume of each segment. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The gas permeation behavior of 2,2′-bis(3,4′dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)-2,4,6-trimethyl-1,3-phenylenediamine (TMPDA)/4,4′-methylene bis(2-chloroaniline) (MOCA) copolyimides was investigated by systematically varying the diamine ratios. All the copolyimides were soluble in most of the common solvents. The gas permeabilities and diffusion coefficients decreased with increasing MOCA content; however, the permselectivity of gas pairs such as H2/N2, O2/N2, CO2/CH4 was enhanced with the incorporation of MOCA moiety. Moreover, all of the copolyimides studied in this work exhibited performance near, lying on or above the existing upper bound trade-off line between permselectivity and permeability.  相似文献   

11.
We have determined the gas transport properties of He, H2, O2, N2, and CO2 for 6FDA‐durene homopolymer and 6FDA‐durene/pPDA copolyimides. The 6FDA‐durene exhibits the highest permeability with the lowest selectivity. Permeability of copolymers decreases with increasing 6FDA–pPDA content, while permselectivity increases with an increase in 6FDA–pPDA content. 6FDA‐durene/pPDA (50/50) and 6FDA‐durene/pPDA (20/80) materials have O2 and CO2 permeabilities greater than those calculated from the addition rule of the semilogarithmic equation. These higher deviations from the additional rule of the semilogarithmic equation are mainly attributed to the fact that these copolyimides have higher solubility coefficients than those calculated from the additive rule. The Tg s of 6FDA‐durene/pPDA copolyimides decrease with an increase in 6FDA–pPDA content. Tg s predicted from the Fox equation are lower than the experimental data, and the their difference increases with an increase in pPDA content, implying the copolyimides of 6FDA‐durene/pPDA may have greater interstitial space among chains because of the conformation difference, and thus create more fraction free volume compared with the ideal case of simple volume addition. Density measurements also suggest these two copolymers have greater free volumes and the fractions of free volume, which supporting the gas transport results. The thermal stability and β‐relaxation temperature have also been studied for these copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2703–2713, 2000  相似文献   

12.
Film‐forming polymers containing ionic groups have attracted considerable attention as emerging materials for gas separation applications. The aim of this article was to synthesize new film‐forming polyimides containing imidazolium groups (PI‐IMs) and establish their structure–performance relationship. In this context, a new aromatic diamine, namely, N1‐(4‐aminophenyl)‐N1‐(4‐(2‐phenyl‐1H‐imidazol‐1‐yl)phenyl)benzene‐1,4‐diamine (ImTPADA), was synthesized and polycondensed with three aromatic dianhydrides, namely, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 4,4‐(4,4‐isopropylidenediphenoxy) bis(phthalic anhydride), and 4,4′‐oxydiphthalic anhydride to form the corresponding polyimides containing pendent 2‐phenylimidazole groups (PI‐IEs). Next, PI‐IMs were prepared by N‐quaternization of pendent 2‐phenylimidazole groups present in PI‐6FDA using methyl iodide followed by anion exchange with bis(trifluoromethane)sulfonimide lithium salt (LiTf2N). PI‐IEs and PI‐IMs exhibited reasonably high molecular weights, amorphous nature, good solubility, and could be cast into self‐standing films from their DMAc solutions. Thermogravimetric analysis showed that 10% weight loss temperature of PI‐IEs and PI‐IMs were in the range 545–475 °C and 303–306 °C, respectively. Gas permeability analysis of films of PI‐IEs and PI‐IMs was investigated by variable‐volume method and it was observed that incorporation of ionic groups into PI‐6FDA resulted in increased permeability while maintaining selectivity. In particular, polymer bearing Tf2N anion exhibited high CO2 permeability (33.3 Barr) and high selectivity for CO2/CH4 (41.1) and CO2/N2 (35.4). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1721–1729  相似文献   

13.
CO2, CH4, O2, and N2 permeability and solubility of unmodified and aryl-nitrated polysulfone were determined at 35°C and pressures up to 20 atm. The degree of nitration was varied from 0 to 2 nitro groups per repeat unit. The permeability and diffusion coefficients for all gases decreased with increasing degree of nitro substitution. The decrease in gas diffusivity is attributed to a combination of decreased fractional free volume and decreased torsional mobility with increasing degree of substitution. The solubilities of N2, O2, and CH4 do not show a systematic dependence on degree of substitution. However, CO2 solubility apparently goes through a minimum as the degree of substitution is increased. CO2 solubility may be influenced by a competition between increases in polymer polarity (favoring higher solubility) and lower free volume (favoring lower solubility) that accompanies increases in the polar nitro substituent concentration. CO2/CH4 solubility selectivity increases monotonically as the degree of substitution increases. CO2/CH4 permselectivity and diffusivity selectivity increased with increasing degree of substitution. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Permeability coefficients P for He, O2, N2, CO2 CH4, C2H4, C2H6, and C3H8 in 12 different silicone polymer membranes were determined at 35.0°C and pressures up to 9 atm. Values of P for CO2, CH4, and C3H8 were also determined at 10.0 and 55.0°C. In addition, mean diffusion coefficients D and solubility coefficients S were obtained for CO2, CH4, and C3H8 in 6 silicone polymers at 10.0, 35.0, and 55.0°C. Substitution of increasingly bulkier functional groups in the side and backbone chains of silicone polymers results in a significant decrease in P for a given penetrant gas. This is due mainly to a decrease in D , whereas S decreases to a much lesser extent. Backbone substitutions appear to have a somewhat lesser effect in depressing P than equivalent side-chain substitutions. The selectivity of a silicone membrane for a gas A relative to a gas B, i.e., the permeability ratio P (A)/P (B), may increase or decrease as a result of such substitutions, but only if the substituted groups are sufficiently bulky. The selectivity of the more highly permeable silicone membranes is controlled by the ratio S (A)/S (B), whereas the selectivity of the less permeable membranes depends on both the ratios D (A)/D (B) and S(A)/S(B). The permeability as well as the selectivity of one silicone membrane toward CO2 were significantly enhanced by the substitution of a fluorine-containing side group that increased the solubility of CO2 in that polymer.  相似文献   

15.
Independent solubility and permeability data, measured at 35°C at up to 26 atm, are reported to show the influence of aryl-bromination on the transport of CO2, CH4, and N2 in 2,6-dimethyl-1,4-poly(phenylene oxide) (PPO). The permeability of PPO was found to vary with the extent of bromination, and the magnitude of change depends on the nature of the gas. The apparent solubility coefficients of all three gases at 20 atm in the polymer increased with the extent of bromination, and the percentage of increase was higher for the gas with lower condensability. The concentration-averaged diffusivities of CO2 and CH4 also showed some variation with the extent of bromination. In particular, there was a notable increase in the diffusivity of CO2 but a slight decrease in that of CH4 when the extent of bromination was increased to 91%. The gas-transport data were also analyzed according to the dual-mode model. The dual-mode parameters exhibit similar dependence on the extent of bromination as the apparent solubility coefficient and concentration-averaged diffusivity do. These observations are interpreted in terms of changes in the average packing, torsional mobility of the chain segments, and cohesive energy density of the polymer.  相似文献   

16.
We have determined the intrinsic gas transport properties of He, H2, O2, N2, CH4, and CO2 for a 6FDA-durene polyimide as a function of pressure, temperature and aging time. The permeability coefficients of O2, N2, CH4, and CO2 decrease slightly with increasing pressure. The pressure-dependent diffusion coefficients and solubility coefficients are consistent with the dual-sorption model and partial immobilization. All the gas permeabilities increase with temperature and their apparent activation energies for permeation increase with increasing gas molecular sizes in the order of CO2, O2, N2, and CH4.The percentages of permeability decay after 280 days of aging are 22, 32, 36, 40, 42, and 30% for He, H2, O2, N2, CH4, and CO2, respectively. Interestingly, except for H2 (kinetic diameter of 2.89 Å), the percentages of permeability decay increase exactly in the order of He (kinetic diameter of 2.6 Å), CO2 (3.30 Å), O2 (3.46 Å), N2 (3.64 Å), and CH4 (3.80 Å). The apparent activation energies of permeation for O2, N2, CH4, and CO2 increase with aging because of the increases in activation energies of diffusion and the decreases in solubility coefficients. The activation-energy increase for diffusion is probably due to the decrease in polymeric molar volume because of densification during aging. The reduction in solubility coefficient indicates the available sites for sorption decreasing with aging because of the reduction of microvoids and interstitial chain space.  相似文献   

17.
The effect of polyethyleneglycol (PEG) on gas permeabilities and selectivities was investigated in a series of miscible cellulose acetate (CA) blend membranes. The permeabilities of CO2, H2, O2, CH4, N2 were measured at temperatures from 30 to 80°C and pressures from 20 to 76 cmHg using a manometric permeation apparatus. It was determined that the blend membrane having 10 wt% PEG20000 exhibited higher permeability for CO2 and higher permselectivity for CO2 over N2 and CH4 than those of the membranes which contained 10% PEG of the molecular weight in the range 200–6000. The CA blend containing 60 wt% PEG20000 showed that its permeability coefficients of CO2 and ideal separation factors for CO2 over N2 reached above 2 × 10−8 [cm3 (STP) cm/cm2 s cmHg] and 22, respectively, at 70°C and 20 cmHg. Based on the data of gas permeability coefficients, time lags and characterization of the membranes, it is proposed that the apparent solubility coefficients of all CA and PEG blend membranes for CO2 were lower than those of the CA membrane. However, almost all the blend membranes containing PEG20000 showed higher apparent diffusivity coefficients for CO2, resulting in higher permeability coefficients of CO2 with relation to those of the CA membrane. It is attributed to the high diffusivity selectivities of CA and PEG20000 blend membranes that their ideal separation factors for CO2 over N2 were higher than those of the CA membrane in the range 50–80°C, even though the ideal separation factors of almost all PEG blend membranes for CO2 over CH4 became lower than those of the CA membrane over nearly the full range from 30° to 80°C.  相似文献   

18.
A series of polyimides with alicyclic and fluorinated moieties previously synthesized were studied for gas separation applications. The solubility behavior of polyimides in various solvents was analyzed through the solubility parameter approach. Permeability coefficients and ideal selectivities were determined for common gases, that is, He, H2, O2, and N2. Polyimide permeabilities were correlated to an improvement of the soluble character and were increased by the introduction of both alicyclic and fluorinated structures. The effect of the casting solvent on gas separation properties was also pointed out. It was found that it is enhanced with increasing diameters for the gas molecules. Finally, some correlations between permeability coefficients and microstructural parameters were discussed. The probability of correlation appears to be also dependent on the diameter and on the polarizability of the gas molecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2413–2426, 2005.  相似文献   

19.
Dynamic mechanical and gas transport properties for homogeneous homopolymer blends and random copolymers of bisphenol-A and tetramethyl bisphenol-A polycarbonates (PC-TMPC) were determined. The gas transport measurements were performed at 35°C for the gases He, H2, O2, Ar, N2, CH4, and CO2. The results show that the copolymers have lower permeability, apparent diffusion, and solubility coefficients than the blends. Permeability coefficients for blends follow a semilogarithmic ideal mixing rule while copolymers exhibit negative deviations from this. Specific volume measurements show that the free volume available for gas transport is slightly larger in copolymers than in blends of the same composition. These apparently contradictory results may relate to the differences in local mode chain motions observed for the copolymer and blend series. The γ relaxation processes in PC and TMPC seem to operate independently in the blends (no intermolecular coupling) while there is clear evidence for intramolecular coupling in the copolymers. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
A new diamine containing spirobisindane and phenazine units, namely, 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine]‐7,7′‐diamine (TTSBIDA) was synthesized starting from commercially available 5,5′,6,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobisindane (TTSBI). TTSBI was oxidized to 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[indene]‐5,5′,6,6′‐tetraone (TTSBIQ) which was subsequently condensed with 4‐nitro‐1,2‐phenylenediamine to obtain 3,3,3′,3′‐tetramethyl‐7,7′‐dinitro‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine] (TTSBIDN). TTSBIDN was converted into TTSBIDA by reduction of the nitro groups using hydrazine hydrate in the presence of Pd/C as the catalyst. A series of new polyimides of intrinsic microporosity (PIM‐PIs) were synthesized by polycondensation of TTSBIDA with commercially available aromatic dianhydrides. PIM‐PIs exhibited amorphous nature, high thermal stability (T10 > 480 °C) and intrinsic microporosity (BET surface area = 59–289 m2/g). The gas permeation characteristics of films of selected PIM‐PIs were evaluated and they exhibited appreciable gas permeability as well as high selectivity. The CO2 and O2 permeability of PIM‐PIs were in the range 185.4–39.2 and 30.6–6.2 Barrer, respectively. Notably, polyimide derived from TTSBIDA and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (PIM‐PI‐6FDA) exhibited high CO2 and O2 permeability of 185.4 and 30.6 Barrer with CO2/CH4 and O2/N2 selectivity of 43.1 and 5.1, respectively. The data of PIM‐PI‐6FDA for CO2/CH4 and O2/N2 gas pairs were located near Robeson upper bound. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 766–775  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号