首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The electrospray droplets that are sampled through an orifice into the vacuum chamber are accelerated by 10 kV and impact on the stainless steel substrate. The mass and the kinetic energy of electrospray droplets are roughly estimated to be a few 10(6) u and approximately 10(6) eV, respectively. The molecular ion M(+.) and the protonated molecule [M+H](+) are observed as secondary ions for chrysene and coronene deposited on the metal substrate (no matrix used). The ionization may take place in the shock wave generated by the high-momentum coherent collision between the droplet projectile and the solid sample. Cluster ions of H(+)(H(2)O)(n) and CF(3)COO(-)(H(2)O)(n), with n up to approximately 150, were observed as secondary ions formed by the electrospray droplet impact ionization (EDI) for 10(-2) M trifluoroacetic acid (TFA) aqueous solution. This indicates that the charged droplets that collide with the metal substrate with the kinetic energy of approximately 10(6) eV do not vaporize completely but are disintegrated into many tiny microdroplets. The ion signal intensity anomalies (i.e. magic numbers) were observed for the cluster ions of H(3)O(+)(H(2)O)(n) and CF(3)COO(-)(H(2)O)(n) for 10(-2) M TFA aqueous solution and of Cs(+)(H(2)O)(n), I(-)(H(2)O)(n), Cs(+)(CsI)(n), and I(-)(CsI)(n) for 10(-2) M CsI aqueous solution.  相似文献   

2.
高效液相色谱/电喷雾质谱联用分析乙二醇硬脂酸酯   总被引:1,自引:0,他引:1  
乙二醇硬脂酸酯和乙二醇双硬酯酸酯是日化工业中常用的珠光剂,被广泛地应用在丝毛洗涤剂、液体洗涤剂和护发用品等领域,对提高产品的性能和外观起到了良好的作用。样品中单双酯的相对含量和碳数分布对其使用性能有较大的影响,会直接影响到产品的稳定性,外观等。乙二醇硬脂酸酯的测定常用化学分析方法,测定其皂化价,酸价等指标^[1],从而间接估计其在样品中的含量,但无法测定样品中单双酯的相对含量和碳数分布情况。用高效液相色谱法,使用正相硅胶柱和四氢呋喃流动相,可以实现乙二醇单硬脂酸酯和乙二醇双硬脂酸酯的分离,但由于乙二醇硬脂酸酯无紫外吸收,需要用到示差折光检测器,无法实施梯度洗脱优化分离,该方法只能按单双酯分离,不能按碳数分离。用高温毛细管柱也可以直接进行乙二醇硬脂酸酯的气相色谱分析^[2]。本研究应用非反相高效液相色谱法,以大气压电离质谱为其在线检测器,同时实现单双酯的分离和按碳数的分离。  相似文献   

3.
4.
Summary Negative ion field desorption mass spectrometry has been applied to detergents containing anionic surfactants. The mass spectra demonstrate a high selectivity for the detection of the sulphonates (concentration limit 10–5 mol/l). The spectra do not contain fragment ions nor ionization products from non-ionic components of the mixture.
Felddesorptions-Massenspektrometrie negativer Ionen zur Analyse von anionischen Tensiden
Zusammenfassung Die Felddesorptions-Massenspektrometrie negativer Ionen wurde zur direkten Mischungsanalyse von Detergentien, die anionaktive Tenside enthalten, angewendet. Die Massenspektren zeigen eine hohe Selektivität der Methode für den Nachweis der Sulfonate (Konzentrationsgrenze 10–5 mol/l). Die Spektren enthalten weder Fragmentionen noch Ionisierungsprodukte nichtionischer Komponenten der Mischung.
  相似文献   

5.
It is demonstrated that laser desorption ion trap mass spectrometry (LD-ITMS) can be successfully applied to the chemical analysis of a monolayer of adsorbates on a solid surface. Negative ion spectra obtained from LD-ITMS of self-assembled monolayers adsorbed from solutions of alkanethiols (CH3(CH2)nSH with N = 5, 9, and 15) onto polycrystalline gold surfaces displayed clear ion peaks corresponding to the sulfonate adsorbate species. Sulfonate ions with the general formula CH3(CH2)nSO3 were detected at m/z 165, 221, and 305, respectively, and were derived from the partial oxidation of the corresponding alkanethiol self-assembled monolayers. Little fragmentation and no clustering was observed in these mass spectra. These results indicate that the sensitivity of LD-ITMS is sufficient to allow its application to a wide array of problems in surface science.  相似文献   

6.
Recent progress in the development of electrospray mass spectrometry (ESMS) as a tool for elemental speciation is reviewed. Reports wherein ESMS is used to qualitatively determine the presence of metal ions (inorganic, organometallic and complexed) and non-metallic inorganic species have grown exponentially over the last decade. In addition to elemental speciation, impact in other areas such as gas-phase chemistry, inorganic–organometallic chemistry and biological mass spectrometry has been prolific. The review is structured to cover each of the areas listed above, and also includes a brief introduction, discussion of the electrospray process, discussion of instrumentation and other relevant application areas. An overview of the types of species/complexes studied is given in each section along with a brief discussion of the application objectives and analytical aspects. Analytical considerations for the development of ESMS as a tool for elemental speciation are also raised, including, application, quantitation, sensitivity, limitations and future directions. The impact of speciation strategies involving stand-alone ESMS, ESMS coupled with on-line separation techniques and the inclusion of ESMS in dual (multiple) technique strategies are presented. High backgrounds due to chemical noise and signal suppression (matrix effects) appear to be two important factors limiting sensitive detection of most analytes. The use of sample pre-treatment, pre-concentration or separation techniques is necessary to alleviate these problems. Although ESMS currently suffers from a number of limitations, continued instrumentation and methods development will improve its capability and diversify the impact of ESMS as a tool for elemental speciation.  相似文献   

7.
The field desorption mass spectra of salts such as quaternary ammonium and carbenium salts with organic cations in addition to high cation intensities show signals for cluster ions composed of the salt cation + salt molecule, i.e. [C + nM]+, n = 1–5, thus allowing determination of the molecular weights of salts. In some cases cluster ions of the type [nM – 1]+ are detected. Conditions for the formation of cluster ions are discussed.  相似文献   

8.
A two‐step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI‐ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three‐dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25‐octabutoxy‐29H,31H‐phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The negative ion mode of field desorption mass spectrometry is matrix dependent. The matrix is used to facilitate the desolvation of ions at field strengths below the onset of field induced electron detachment. The role of the matrix in the desolvation mechanism for negative ions is briefly described and the main properties of a matrix solution, such as viscosity, solubility for complex salts and acids, and adhesion to the emitter surface, on the ion formation are discussed. The application of matrix mixtures with strong adhesion to the emitter surface even at elevated temperatures and high field strengths are considered to be important for the further improvement of this ionization method.  相似文献   

10.
The use of electrospray ionisation Fourier-transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) for the analysis of dynamic combinatorial libraries (DCLs) of pseudo-peptide macrocyclic hydrazone oligomers is presented. The design of library building blocks results in mixtures of compounds with greater diversity than libraries generated by conventional combinatorial chemistry and so presents increased demands for analysis. The extended capabilities of the FTICR technique, specifically selective ion trapping, sensitivity, high resolution and mass accuracy over a broad mass range, are compatible with these increased demands and, most importantly, without the need for chromatography. Preliminary studies on the sequencing of cyclic oligomers and confirmation of the presence of sequence isomers are presented. These studies highlight the potential of FTICR-MS as a superior technique for the analysis of combinatorially generated compounds.  相似文献   

11.
The dynamic range of Fourier transform ion cyclotron mass spectrometry (FTICR) is typically limited by the useful charge capacity of an FTICR cell (to approximately 10(6) to 10(7) elementary charges) and the minimum number of ions required to produce a useful signal (approximately 10(2) elementary charges). We show that the expansion of the dynamic range by 2 orders of magnitude can be achieved by preselecting lower abundance species in a quadrupole interface to an electrospray ionization (ESI) source. Ion preselection is then followed by ion accumulation in external to the FTICR cell a linear (2-D) quadrupole trap and subsequent transfer to the region of high magnetic field for gated trapping in the FTICR cell. Two modes of ion preselection, using either the quadrupole filtering mode or rf-only dipolar excitation, were studied and mass resolutions of 30 to 100 were achieved for selective external ion accumulation of peptides and proteins with molecular weights ranging from 500 to 17,000 Da. The ability to selectively eject the most abundant species before trapping in the FTICR has enormous practical benefits for increasing the sensitivity and dynamic range of measurements.  相似文献   

12.
Electrospray 'soft' ionisation (ESI) and multistep mass spectrometry (MS(n)) techniques enable characterisation of a bioactive polymer, poly[(R,S)-3-hydroxybutanoic acid] (a-PHB), containing covalently bonded benzylpenicillin. The chemical structures of individual mass-selected bioactive macromolecules have been determined, and their fragmentation mechanisms have been compared with those of pure penicillin G. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

13.
A series of six bimetallic oxovanadium complexes (1-6; only one was purified) were investigated by electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) in negative-ion mode. Radical molecular anions [M](.-) were observed in MS mode. Fragmentation patterns of [M](.-) were proposed, and elemental compositions of most of the product ions were confirmed on the basis of the high-resolution ESI-CID-MS/MS spectra. A complicated series of low-abundance product ions similar to electron impact (EI) ionization spectra indicated the radical character of the precursor ions. Fragment ions at m/z 214, 200, and 182 seem to be the characteristic ions of bimetallic oxovanadium complexes. These ions implied the presence of a V-O-V bridge bond, which might contribute to stabilization of the radical. To obtain more information for structural elucidation, three representative bimetallic oxovanadium complexes (1-3) were analyzed further by MS in positive-ion mode. Positive-ion ESI-MS produced adduct ions of [M + H](+), [M + Na](+), and [M + K](+). The fragmentation patterns of [M + Na](+) were different than those of radical molecular anions [M](.-). Relatively simple fragmentation occurred for [M + Na](+), possibly due to even-electron ion character. Negative-ion MS and MS/MS spectra of the hydrolysis product of Complex 1 supported these finding, in particular, the existence of a V-O-V bridge bond.  相似文献   

14.
Deuterated solvents and DIOS surfaces derivatized with different functional groups are used to investigate impacts of local chemical environment on analyte ionization. Both solvent molecules and surface functional groups are found to directly participate in analyte protonation in the condensed phase. The corresponding protonation effectiveness is quantitatively estimated based on the relative MS peak intensities of [M+2]+/[M+1]+. A direct correlation between ionization of triethylamine and the relative acidities of the surface and the solvent is evident. In addition, the proton donating effectiveness of a solvent is found to be related to its vapor pressure. Improved MS detection of small molecules via proper surface treatment and solvent selection is demonstrated.  相似文献   

15.
The analysis of self-assembled supramolecular clusters held together by metal-ligand interactions is a relatively new area in mass spectrometry. These complexes may have molecular weights exceeding several kDa, are often highly charged and their composition is most sensitive to their chemical environment. Electrospray ionization appears to be the ionization technique of choice for their mass spectral characterization. The analysis (positive and negative ion detection mode) of the prototype compound [Ti4L4]8? (L = a catechol-based tris-bidentate ligand; MW of cluster = 2293 u) using a Paul trap mass analyzer is reported. The combination of electrospray ionization and high resolution ion trap technology is a powerful tool which provides the unambiguous solution state characterization of this supramolecular cluster. The results are correlated with the known solid state structure of the cluster and reactions previously reported for mononuclear Ti(IV) catecholates.  相似文献   

16.
17.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

18.
A number of carboxylate anions spanning a mass range of 87-253 amu (pyruvate, oxalate, malonate, maleate, succinate, malate, tartarate, glutarate, adipate, phthalate, citrate, gluconate, 1,2,4-benzenetricarboxylate, and 1,2,4,5-benzenetetracarboxylate) were investigated using electrospray ionization ion mobility spectrometry. Measured ion mobilities demonstrated a high correlation between mass and mobility in both N2 and CO2 drift gases. Such a strong mass-mobility correlation among structurally dissimilar ions suggests that the carboxylate functional group that these ions have in common is the source of the correlation. Computational analysis was performed to determine the most stable conformation of the studied carboxylate anions in the gas phase under the current experimental conditions. This analysis indicated that the most stable conformations for multicarboxylate anions included intramolecular hydrogen-bonded ring structures formed between the carboxylate group and the neutral carboxyl group. The carboxylate anions that form ring confirmations generally show higher ion mobility values than those that form extended conformations. This is the first observation of intramolecular hydrogen-bonded ring conformation of carboxylate anions in the gas phase at atmospheric pressure.  相似文献   

19.
Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.  相似文献   

20.
The desorption of neutrals, alkali ions and quasimolecular ions of sucrose was studied as function of substrate temperature in laser desorption mass spectrometry. These phenomena were also investigated in thermal desorption experiments. It was concluded that in these experiments gas phase cationization is the major ionization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号