首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydration of gas-phase ions formed by electrospray ionization   总被引:1,自引:0,他引:1  
The hydration of gas-phase ions produced by electrospray ionization was investigated. Evidence that the hydrated ions are formed by two mechanisms is presented. First, solvent condensation during the expansion inside the electrospray source clearly occurs. Second, some solvent evaporation from more extensively solvated ions or droplets is apparent. To the extent that these highly solvated ions have solution-phase structures, then the final isolated gas-phase structure of the ion will be determined by the solvent evaporation process. This process was investigated for hydrated gramicidin S in a Fourier-transform mass spectrometer. Unimolecular dissociation rate constants of isolated gramicidin S ions with between 2 and 14 associated water molecules were measured. These rate constants increased from 16 to 230 s-1 with increasing hydration, with smaller values corresponding to magic numbers.  相似文献   

2.
Evaporation of solvent from charged droplets was found not to be a prerequisite to ion desorption in electrospray mass spectrometry. Evidence of evaporation was absent in an examination of the electrospray mass spectral profiles of cytochrome c and myoglobin in 0.2% acetic and propionic acid solutions; the pHs of these two acid solutions are expected to change in opposite directions with evaporation. The results strongly suggest that ions, as observed in electrospray mass spectrometry, are desorbed from solutions that have undergone minimal evaporation, in other words, at the beginning rather than later parts of the electrospray process. It is speculated that ions are desorbed directly from the solution-air interface at the needle tip.  相似文献   

3.
制备了四种四丁基氯化铵类深共融溶剂,包括四丁基氯化铵:丙酸[TBAC:2PA]、四丁基氯化铵:乙二醇[TBAC:2EG]、四丁基氯化铵:聚乙二醇[TBAC:2PEG]、四丁基氯化铵:苯乙酸[TBAC:2PAA].在288.15-338.15 K温度范围内,测定了它们的密度、电导率、动力粘度及折光率.讨论了温度对密度、电导率、动力粘度及折光率等性质的影响.通过经验方程估算了深共融溶剂的热膨胀系数、分子体积、标准摩尔熵及晶格能等热力学性质参数.利用Vogel-Fulcher-Tamman (VFT)方程和Arrhenius方程,将测量的电导率和动力粘度对温度拟合,得到了动力粘度和电导率随温度变化方程式.有关研究对深共融溶剂的工业化应用具有重要意义.  相似文献   

4.
According to a current model for protein electrospray, the charge-state distributions (CSDs) observed by electrospray-ionization mass spectrometry (ESI-MS) are controlled by the Rayleigh-limit charge of the droplets that generate the gas-phase protein ions. A testable prediction of this model is that the maximum charge state displayed by proteins in ESI-MS should respond to changes in the surface tension of the ESI droplets according to the Rayleigh equation. In this work, we subject this specific hypothesis to direct experimental testing. We show data obtained by time-of-flight (TOF) nano-ESI-MS with several different proteins in aqueous solutions containing 20-50% 1-propanol or 40% 1,2-propylene glycol. Both of these compounds have lower vapor pressure and lower surface tension than water. Propylene glycol also has a lower evaporation rate than water, providing an even more stringent test for surface tension effects in late ESI droplets. None of these cosolvents affects the CSDs of either folded or unfolded proteins as predicted by the Rayleigh-charge model. The only changes induced by 1-propanol can be ascribed to protein unfolding triggered above critical concentrations of the alcohol. Below such a threshold, no shift of the CSDs toward lower charge states is observed. The presence of 40% propylene glycol in the original protein solutions gives rise to CSDs that either are the same as those in the control samples or present much smaller changes than those calculated by the Rayleigh equation. Thus, the charge states of gas-phase protein ions produced by electrospray do not seem to be limited by the surface tension of the solvent. They rather appear to be quite protein-specific.  相似文献   

5.
In this work, the intrinsic viscosities of poly(ethylene glycol) with a molar mass of 20 kg⋅mol−1 were measured in water/1-propanol solutions from 283.1 to 313.1 K. The expansion factors of the polymer chains were calculated from the intrinsic viscosity data. The thermodynamic parameters entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient were derived from the temperature dependence of the polymer chain expansion factor. The thermodynamic parameters indicate that mixtures of water/1-propanol become weaker solvents for poly(ethylene glycol) with increasing temperature. Also, the thermodynamic parameters indicate that the solvent ability of mixed water/1-propanol for poly(ethylene glycol) is less than that of pure water.  相似文献   

6.
Large increases in viscosity are not normally observed when insoluble liquid polymers are mixed in the absence of a compatibilizing agent: the liquids separate into bulk phases. Mixing propyl- or allyl-modified oligo(ethylene glycol)(PEG), but not the parent hydroxy-terminated oligo(ethylene glycol), with silicone pre-elastomers led a sharp increase in viscosity that preceded the onset of cure. Only in the case of allyl-modified PEG, however, did a low density, closed cell silicone foam form that, in addition to trapped bubbles, contained dispersed PEG droplets. Rheological studies demonstrate that the origins of the viscosity build lie in the formation, shortly after mixing, of organo-PEG stabilized droplets that act as fillers within the silicone pre-elastomers. Similar viscosity builds were not observed with hydroxy-terminated oligo(ethylene glycol). Although the propyl-modified PEG led initially to large viscosity increases, its ability to stabilize bubbles was comparably limited. The surface activity of the propyl- and allyl-PEG compounds themselves facilitates the formation of a colloidal dispersion within the silicone. However, the key to the observed foamed product is the in situ platinum-catalyzed hydrosilylation of the allyl group, prior to or concomitant with silicone cure, leading to PEG-silicone copolymers that are able to stabilize both dispersed PEG droplets and bubbles.  相似文献   

7.
The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing gas-phase basicities of these solvents, although other physical properties of these solvents may also play a role. The effect is relatively small for these solvents, possibly due to their limited concentration inside the electrospray interface. In contrast, the addition of even small amounts of diethylamine (<0.4%) results in dramatic shifts to lower charge, presumably due to preferential proton transfer from the higher charge state ions to diethylamine. These results clearly show that the maximum charge states and charge state distributions of ions formed by electrospray ionization are influenced by solvents that are more volatile than water. Addition of even small amounts of two solvents that are less volatile than water, ethylene glycol and 2-methoxyethanol, also results in preferential deprotonation of higher charge state ions of small peptides, but these solvents actually produce an enhancement in the higher charge state ions for both cytochrome c and myoglobin. For instruments that have capabilities that improve with lower m/z, this effect could be taken advantage of to improve the performance of an analysis.  相似文献   

8.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

9.
The densities and sound velocities of mixtures of water with poly(ethylene glycol), poly(ethylene glycol) monomethylether, and poly(ethylene glycol) dimethylether with mean molar weights between 250 and 500 have been measured as a function of mixture composition and temperature between 10 and 40 degrees C. Isentropic compressibilities are derived from the data and are compared to those for the ethylene glycol/water system and for other organic solvent/water mixtures. Relative minima in the mixture volume to ideal volume ratio and in the dependence of the compressibility upon mixture composition are discussed in terms of the conformational variability of the chainlike oligomers, of hydrogen-bonded networks, and of water clusters between the oligomer chains.  相似文献   

10.
The evaporation of sessile droplets placed on polymer surfaces was studied by microscopic observation of the changes in shape of aqueous solution droplets in which the alkyl lengths and the initial concentrations of sodium n-alkylates were varied. Although the initial contact angles of the droplets were not significantly different, the evaporation process varied significantly with the alkyl length of the sodium n-alkylate employed. For the sodium dodecanoate (C 12), showing the highest surface activity, the concentration was found to have a significant effect on the evaporation process of the droplets. In the evaporation of water droplets, variations in the three distinct stages were caused by the different concentration of solutes distributed near or at the air/water interface. It is revealed that the concentration of droplet solute near the air/water interface requires not only solvent evaporation but also some affinity of the solute for the interface. The initial C 12 concentration-dependence of the evaporation of C 12 solution droplets is discussed with particular emphasis on the sudden spreading or sudden contraction of the contact area near the end of evaporation. It is suggested that the cluster formation by C 12 molecules at the air/liquid interface during the evaporation causes Marangoni instability in an evaporating droplet, and the clusters are expected to move dynamically, depending on the droplet concentration of C 12, from the droplet center to the contact line and vice versa, showing Marangoni flow along the air/water interface.  相似文献   

11.
The origin of the extent of charging and the mechanism by which multiply charged ions are formed in electrospray ionization have been hotly debated for over a decade. Many factors can affect the number of charges on an analyte ion. Here, we investigate the extent of charging of poly(propyleneimine) dendrimers (generations 3.0 and 5.0), cytochrome c, poly(ethylene glycol)s, and 1,n-diaminoalkanes formed from solutions of different composition. We demonstrate that in the absence of other factors, the surface tension of the electrospray droplet late in the desolvation process is a significant factor in determining the overall analyte charge. For poly(ethylene glycol)s, 1,n-diaminoalkanes, and poly(propyleneimine) dendrimers electrosprayed from single-component solutions, there is a clear relationship between the analyte charge and the solvent surface tension. Addition of m-nitrobenzyl alcohol (m-NBA) into electrospray solutions increases the charging when the original solution has a lower surface tension than m-NBA, but the degree of charging decreases when this compound is added to water, which has a higher surface tension. Similarly, the charging of cytochrome c ions formed from acidified denaturing solutions generally increases with increasing surface tension of the least volatile solvent. For the dendrimers investigated, there is a strong correlation between the average charge state of the dendrimer and the Rayleigh limiting charge calculated for a droplet of the same size as the analyte molecule and with the surface tension of the electrospray solvent. A bimodal charge distribution is observed for larger dendrimers formed from water/m-NBA solutions, suggesting the presence of more than one conformation in solution. A similar correlation is found between the extent of charging for 1,n-diaminoalkanes and the calculated Rayleigh limiting charge. These results provide strong evidence that multiply charged organic ions are formed by the charged residue mechanism. A significantly smaller extent of charging for both dendrimers and 1,n-diaminoalkanes would be expected if the ion evaporation mechanism played a significant role.  相似文献   

12.
The study of evaporation of water from biological macromolecules is important for the understanding of electrospray mass spectrometry experiments. In electrospray ionization (ESI), electrically charged nanoscale droplets are formed from solutions of, for example, proteins. Then evaporation of the solvent leads to dry protein ions that can be analyzed in the mass spectrometer. In this work the dynamics of water evaporation from native cytochrome c covered by a monolayer of water is studied by molecular dynamics (MD) simulations at constant energy. A model of the initial conditions of the process is introduced. The temperature of the protein drops by about 100 K during the 400 picoseconds of the simulations. This sharp drop in temperature causes the water evaporation rate to decrease by about an order of magnitude, leaving the protein with 50% to 90% of the original water molecules, depending on the initial temperature of the simulation. The structural changes of the protein upon desolvation were considered through calculations of the radius of gyration and the root mean square (RMS) of the protein. A variation of 0.4 A in the radius of gyration, together with an RMS value of less than 3 A, indicates only minor changes in the overall shape of the protein structure. The water coordination number of the solvation shell is much smaller than that for bulk water. The mobility of water is high at the beginning of the simulations and drops as the simulation progresses and the temperature decreases. Incomplete desolvation of protein ions was also observed in recent experiments.  相似文献   

13.
We investigated how physico-chemical properties of charged droplets are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF), Fraunhofer diffraction and mass spectrometry. For this purpose, we implemented a laser-induced-fluorescence profiling setup in conjunction with a fast, high-resolution particle sizing scheme on a modified Agilent Jet Stream electrospray source coupled to a single quadrupole mass analyser. The optical setup permits us to profile the solvent fractionation and the size of the droplets as they evaporate in an electrospray plume by measuring both the angular scattering pattern and emission spectra of a solvatochromic fluorescent dye. Mass spectra are recorded simultaneously. These mass spectrometry and optical spectroscopy investigations allow us to study the relation between the observed charge-state distributions of protein anions and physico-chemical properties of evaporating droplets in the spray plume. By mixing water with methanol, a refolding of cytochrome C is observed as the water percentage increases in the plume due to the preponderant evaporation of volatile methanol.  相似文献   

14.
Evaporation from water-ethylene glycol liquid mixture   总被引:1,自引:0,他引:1  
Evaporation rates were determined for water-ethylene glycol liquid mixtures with different mole fractions, where the evaporation rate expressed as mg min(-1)/area was used because of the presence of two kinds of molecular species. The rate increased with increasing temperature and decreased with increasing mole fraction of ethylene glycol, almost obeying ideal mixing of the two components, although a small positive deviation was observed over the mole fraction from 0 to 0.5 of ethylene glycol at higher temperatures. The activation energy of evaporation was determined from the temperature dependence of the evaporation rate, where the energy was an apparent one because the composition of evaporated species was not determined. The activation energy increased with decreasing temperature and with increasing mole fraction of ethylene glycol, where the energy obeyed the ideal mixing at lower temperatures while it positively deviated at higher temperatures. The evaporation rates were examined by surface tension of the liquid mixture, but any definite relation between them was not found. Both the evaporation rate and the activation energy were found to be determined mainly by the mole fraction in the surface layer from which the evaporation takes place. Finally, the new concept of surface excess was presented, where the surfactant molecules were concentrated and formed a bimolecular layer at a certain distance beneath the air/solution interface.  相似文献   

15.
The conformation of cytochrome c molecules within electrospray droplets is investigated by monitoring the laser induced fluorescence of its single tryptophan residue (Trp-59). By increasing the alcohol concentration of the electrosprayed solutions, protein denaturation is induced, giving rise to significant changes in the intensity of the detected fluorescence. Comparison with analogous denaturation experiments in solution provides information about the relative protein conformations and differences between the bulk-solution and droplet environments. Both electrospray-plume and bulk-solution fluorescence measurements using low methanol concentration solutions indicate the presence of folded protein structures. At high methanol content, fluorescence measurements are consistent with the presence of partly denatured or unfolded conformations. At intermediate methanol content, differences are observed between the extent of denaturation in solution and that within the droplets, suggesting electrosprayed proteins have more compact structures than those detected in bulk measurements using solutions of similar composition. This infers that some fraction of the proteins within the droplets have refolded relative to their bulk-solution conformation. Protein denaturation experiments using the low vapor pressure solvent 1-propanol indicate that differences between the droplet and solution measurements are not due to solvent evaporation effects. It is suggested that different droplet conformations are more likely the result of protein diffusion to the droplet surface and effects of the droplet/air interface. To our knowledge, these are the first reported measurements of protein fluorescence within electrospray droplets.  相似文献   

16.
Primary- and secondary-alkyl aryl tellurides, prepared by arenetellurolate ring-opening of epoxides/ O-allylation, were found to undergo rapid (3-10 min) group-transfer cyclization to afford tetrahydrofuran derivatives in 60-74% yield when heated in a microwave cavity at 250 degrees C in ethylene glycol or at 180 degrees C in water. To go to completion, similar transformations had previously required extended photolysis in refluxing benzene containing a substantial amount of hexabutylditin. The only drawback of the microwave-assisted process was the loss in diastereoselectivity which is a consequence of the higher reaction temperature. Substitution in the Te-aryl moiety of the secondary-alkyl aryl tellurides (4-OMe, 4-H, 4-CF(3)) did not affect the outcome of the group-transfer reaction in ethylene glycol. However, at lower temperature, using water as a solvent, the CF(3) derivative failed to react. The microwave-assisted group-transfer cyclization was extended to benzylic but not to primary- and secondary-alkyl phenyl selenides.  相似文献   

17.
Textured surfaces consisting of nanometer- to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution-cast onto silica. The particle textured ionomer surfaces were prepared by either spin-coating or solution-casting ionomer solutions at controlled evaporation rates. The effects of the solvent used to spin-coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation on the surface morphology of cast films were investigated. The surface morphologies were consistent with a spinodal decomposition mechanism, where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted separation from the surface even after annealing at 120 °C for 1 week. The water contact angles on as-prepared surfaces were relatively low, ~90°, due to the polar groups in the ionomer, but when the surface was modified by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~109° on smooth surfaces and up to ~140° on the textured surfaces. Although the surfaces were hydrophobic, the contact angle hysteresis was relatively high and water droplets stuck to these surfaces even when the surface was turned upside down.  相似文献   

18.
In this letter we show that the Marangoni flow contribution to the evaporation rate of small heated water droplets resting on hot substrates is negligible. We compare data of evaporating droplet experiments with numerical results and assess the effect of Marangoni flow and its contribution to the evaporation process. We demonstrate that heat conduction inside these water droplets is sufficient to give an accurate estimate of evaporation rates. Although convection in evaporating water droplets remains an open problem, our aim in this study is to demonstrate that these effects can be neglected in the investigation of evaporation rate evaluation. It is worth noting that the presented results apply to volatile heated drops which might differ from spontaneously evaporating cases.  相似文献   

19.
Several investigators have observed a discrepancy in electrospray response of complementary strands from denatured DNA, which has been attributed to the difference in hydrophobicity between the two strands; the more hydrophobic species tend to have higher ion abundances. The implementation of a heated electrospray source has allowed us to "level" the electrospray response for two equimolar complementary strands with different hydrophobicities. As the temperature was increased, the ratio of ion abundances of the less hydrophobic noncoding strand to the more hydrophobic coding strand approached unity. Furthermore, the heated electrospray source was used to denature amplicons containing 7-deaza purines, which can be used to facilitate sequencing by mass spectrometry.  相似文献   

20.
Here, a new solvent system for cellulose is reported. The solvent is a mixed aqueous solution of 1.0 wt.% poly(ethylene glycol) (PEG) and 9.0 wt.% of NaOH. Cellulose powder was added into the mixture at room temperature at first, and freezing it at −15 °C for 12 h following a thaw of the mixture at room temperature under strong stirring. There formed a clean solution of cellulose, and the optical microscopy was used to record the dissolving process. 13C-NMR, FT-IR, XRD, and intrinsic viscosity measurements revealed that there forms a homogeneous solution of cellulose in the new solvent system. The maximum solubility of cellulose with average molecular weight of 1.32 × 105 g mol−1 in the solvent system is 13 wt.%. The cellulose solution in the new solvent system is stable, even for 30 days storage at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号