首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spray cone emerging during an extended metal atomization process (called spray forming) has been investigated in order to quantify the influence of highly concentrated multiphase flows on phase‐Doppler‐anemometry (PDA) measurements. Using this non‐intrusive, optical measurement technique not only the local particle size and velocity distributions of the spray can be obtained but also additional information about the mass flux in the multiphase flow. Since standard phase‐Doppler systems can be easily applied to low concentrated particle systems (spherical particles with smooth surfaces and an optical transparent continuous phase taken for granted) the application of this measurement technique to highly concentrated multiphase flows is more complex. Both the laser light propagating from the PDA device to the probe volume and the scattered one going backward to the PDA receiving system are disturbed by passing the highly concentrated multiphase flow. The resulting significant loss in signal quality especially concerns the measurement of the smaller particles of the spray because of their reduced silhouette (in comparison with the bigger ones). Thus, the detection of the smallest particles becomes partially impossible leading to measurement of a distorted diameter distribution of the entire particle collective. In this study the distortions of the measured distributions dependent on the particle number concentration as well as on the path length of the laser light are discussed.  相似文献   

2.
Heinrich Bech  Alfred Leder 《Optik》2006,117(1):40-47
If a small transparent particle is illuminated with a short laser pulse, the signals of the individual scattering light orders appear temporally successively. Since to each scattered light order belongs a specific optical path through the particle, the particle size can be determined from the time difference between the detected scattered light signals. For the case of a detector position within the backscatter region, which especially is important in measuring practice, the time difference between the specular reflection signal and the signal after a single internal reflection (refraction of second order) must to be evaluated. In the numerical simulation we generate the concerned scattered light signals by using time-resolved Mie calculations and in this paper we present the geometrical models, which permit a correct interpretation of the temporal behavior of these pulse-induced scattered light signals.  相似文献   

3.
Dynamic light scattering (DLS) is a technique used for measuring the size of molecules and particles undergoing Brownian motion by observing time‐dependent fluctuations in the intensity of scattered light. The measurement of samples using conventional DLS instrumentation is limited to low concentrations due to the onset of a phenomenon called multiple scattering. The problems of multiple scattering have been addressed in a light scattering instrument incorporating non‐ invasive backscatter optics (NIBS). This novel optic arrangement maximizes the detection of scattered light while maintaining signal quality and allows for measurements of turbid samples. This paper discusses the ability of backscatter detection to accurately determine particle sizes at 1 %w/v sample concentrations and demonstrates the correct resolution of different size populations using a series of latex standard mixtures with known volume ratios. The concentration of 1 %w/v is much higher than can be measured on conventional dynamic light scattering instruments.  相似文献   

4.
Aerosol light absorption and its measurement: A review   总被引:1,自引:0,他引:1  
Light absorption by aerosols contributes to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. Aerosol light absorption in the atmosphere is dominated by black carbon (BC) with additional, significant contributions from the still poorly understood brown carbon and from mineral dust. Sources of these absorbing aerosols include biomass burning and other combustion processes and dust entrainment.For particles much smaller than the wavelength of incident light, absorption is proportional to the particle volume and mass. Absorption can be calculated with Mie theory for spherical particles and with more complicated numerical methods for other particle shapes.The quantitative measurement of aerosol light absorption is still a challenge. Simple, commonly used filter measurements are prone to measurement artifacts due to particle concentration and modification of particle and filter morphology upon particle deposition, optical interaction of deposited particles and filter medium, and poor angular integration of light scattered by deposited particles. In situ methods measure particle absorption with the particles in their natural suspended state and therefore are not prone to effects related to particle deposition and concentration on filters. Photoacoustic and refractive index-based measurements rely on the heating of particles during light absorption, which, for power-modulated light sources, causes an acoustic signal and modulation of the refractive index in the air surrounding the particles that can be quantified with a microphone and an interferometer, respectively. These methods may suffer from some interference due to light-induced particle evaporation. Laser-induced incandescence also monitors particle heating upon absorption, but heats absorbing particles to much higher temperatures to quantify BC mass from the thermal radiation emitted by the heated particles. Extinction-minus-scattering techniques have limited sensitivity for measuring aerosol light absorption unless the very long absorption paths of cavity ring-down techniques are used. Systematic errors can be dominated by truncation errors in the scattering measurement for large particles or by subtraction errors for high single scattering albedo particles. Remote sensing techniques are essential for global monitoring of aerosol light absorption. While local column-integrated measurements of aerosol light absorption with sun and sky radiometers are routinely done, global satellite measurements are so far largely limited to determining a semi-quantitative UV absorption index.  相似文献   

5.
The performance of a narrow-angle and a wide-angle, forward scattering laser aerosol spectrometer has been studied as a function of particle size and refractive index. The results have been compared with theoretical calculations based on light scattering theory. The results indicate that for the narrow-angle instrument, the scattered-light intensity is not a monotonic function of particle size for transparent particles (a monotonic relationship is required for unambiguous particle size measurement) above 0.7 μm. The instrument is therefore limited in its useful range to size distribution measurement between 0.2 μm – its lower particle size limit – and 0.7 μm for transparent particles. In the case of the wide-angle instrument, the instrument output is a monotonic function of particle size for transparent particles, but the output is severely attenuated for light absorbing particles above 0.3 μm. The instrument, therefore, cannot be used for accurate size measurements above 0.3 μm for light absorbing particles.  相似文献   

6.
Essentially the laser two-focus (L2F) and laser Doppler anemometer (LDA) are time-of-flight anemometers. The velocity of particles in the micrometre range is determined within the limits of an optically fixed measurement distance. For this only one optoelectronic receiver for the detection of the scattered light is required [1, 2]. With an arrangement of two receiving optics, positioned under an off-axis angle φ and an elevation angle ± ψ to the optical axis of the measurement system, a resolution of three-dimensional structures can be achieved and with regard to spherical particles it is possible to determine the dimensions by means of the temporal or phase shift of the signals in the receiving optics. A particle size-dependent distance inside the measurement volume can be fixed, which has to be passed in order to change the signal from one receiving optics to the other. An LDA with an arrangement of two receiving optics for particle sizing is known as a phase Doppler anemometer (PDA); an L2F designed with two receiving optics can be termed a pulse-displacement two-focus anemometer (P2F). The physical analysis of the two methods with respect to a temporal signal displacement in the receivers yielded new results.  相似文献   

7.
The working principle of the single-fibre reflection (SFR) probe is that light emitted by a laser diode is guided into the measuring volume by the same fibre which receives the proportion of light reflected by the particles in the vicinity of the probe tip and transmits it back to a photosensitive element. In contrast to other configurations of fibre optical probes, the SFR probe is characterized by an unambiguous calibration graph over the entire range of solid volume concentration values. SFR probes have been successfully applied to different kinds of multiphase flow systems, e.g. fluidized beds, pneumatic conveying lines, elutriators and thickeners. A particular question for the interpretation of measurements has always been the effective size of the measuring volume, which is mainly determined by the solid volume concentration. In this paper a simplified mathematical model of the signal generation by backscattering of the emitted light at the particle surfaces is given. The theory takes into account the average optical properties of the solids and their particle size distributions. The particle properties are determined on the basis of this model, which finally delivers the shape, size and depth of the effective measuring volume. For particle sizes between 30 and 120 μm the depth of the measuring volume of a 600-μm fibre probe is between 0.2 mm for solid concentrations near the fixed-bed state and approximately 4 mm for solid volume concentrations as low as 0.1 vol.-%.  相似文献   

8.
A theoretical model has been developed for studying the response of the phase Doppler interferometer when multiple particles are simultaneously present within the measurement probe volume. The developed model incorporates the geometrical optics theory for describing the coherent interaction between the scattered light signals of multiple particles, eachhaving different size, velocity, trajectory, and arrival time. The resulting Doppler signal is processed by a theoretical signal processor which can simulate the performance characteristic of different signal processing schemes that are widely used in phase Doppler interferometry, namely, zero-crossing counter, covariance, autocorrelation and DFT parocessors. The application of the developed model for studying the coherent scattering by two particles has been specifically addressed in this paper. It has been shown that a DFT processor can be used to simultaneously measure the size and velocity of the two particles in most instances. However, for more than two particles, the signal processing scheme becomes more complex because of a quadratic increase in the beat frequency components.  相似文献   

9.
利用APD对大气气溶胶空气动力学直径测量分析   总被引:2,自引:1,他引:1  
连悦  刘文清  张天舒  刘建国 《光子学报》2005,34(12):1837-1840
详细介绍了气溶胶大气粒子经过两个激光束后通过雪崩二极管(APD)探测其形成的双峰信号,从而得到气溶胶粒子飞行时间的方法,利用标准粒子对飞行时间进行校准后,实现了对大气气溶胶粒子直径的实时监测.通过不同粒径多组的实验数据进行分析组成专家模式,代入系统进行空气测量或标准粒子测量,得到的实验值与理论值一致.  相似文献   

10.
11.
Wang X  Chan RK  Cheng AS 《Optics letters》2005,30(10):1087-1089
We present a new type of flow cytometer that can operate underwater for a long time, as long as days, for measuring the size distribution, concentration, and biomass of marine phytoplankton. The major improvement of the instrument over existing techniques is the elimination of sample preparation, which is achieved with a laser Doppler crossed-beam arrangement for both defining a measurement volume and measuring the speed of the particle traversing it. By simultaneously sampling the laser-induced fluorescence signal and the Doppler signals, the technique can discriminate sizes of phytoplankton.  相似文献   

12.
激光尘埃粒子计数器微型光学传感器的研究   总被引:9,自引:1,他引:8  
研制成功便携式激光尘埃粒子计数器的核心部件———微型光学传感器。该传感器采用直角散射光收集形式,以高功率半导体激光器作为光源,同时采用高性能的PIN型光电二极管作为光电探测器。散射光收集系统为单一大数值孔径的球面反射镜,其对粒子散射光的收集角范围从20°到160°。粒子散射光信号是脉冲信号,其频谱成份主要在高频段,所以在PIN型光电二极管后用一个带通式前置放大器来消除外界的低频噪声,根据米氏散射理论计算了该光学传感器的光散射响应特性,并用聚苯乙烯标准粒子实测了该光学传感器的性能。结果表明,该系统具有高的信噪比、计数效率和尺寸分辨本领。  相似文献   

13.
Dynamic light scattering is a widely used technique for the sizing of colloidal suspensions. It is capable of measuring particles across the size range from approximately 1 nm to several microns. However the larger particle sizes tend to pose problems for the interpretation of the scattered light signal either by virtue of their light scattering efficiency relative to the smaller species present or the departure of the scattered light signal from Gaussian statistics. Rapid removal of such particles in-situ could extend the use of dynamic light scattering particularly in on-line analysis or laboratory automated measurement. In this paper a method is demonstrated for the in-situ removal of larger particles in suspension by means of ultrasonic standing waves and concurrent dynamic light scattering measurement. The theory behind ultrasonic particle manipulation and its effect on the motion of the particles is discussed. Data from a scattering cell designed to incorporate the ultrasonic technology is presented showing that dynamic light scattering measurements may be carried out under such conditions. Varying the energy density of the ultrasonic field allows particles greater than a defined cut-off diameter to be removed from the measurement region. Theory shows that the minimum cut-off size may be as small as 100 nm. Results presented here demonstrate complete removal at a lower diameter threshold of approximately 2000 nm.  相似文献   

14.
利用FA-3型Anderson撞击式气溶胶粒度分布采样器采集大气中的可吸入颗粒物。在实验室使用光学测量系统对粒径低于PM2.5的气溶胶颗粒物进行透过率测量。结果表明,透过率随气溶胶粒子粒径的增大具有逐渐增加的趋势。粒径低于PM2.5的气溶胶颗粒与PM10粒径范围内的透过率相比,具有明显的波长选择性。  相似文献   

15.
Using a computer model based on Lorenz-Mie and generalized Lorenz-Mie theory, various optical confiugurations of a phase-Doppler system were analysed with regard to their suitability for diameter measurements in the sub-micron range. The major concern in this size range is multi-valuedness of the phase-diameter characteristic, the relatively small signal-to-noise ratio obtained with the very low scattered intensity and the small value of the phase difference to be measured. It is shown numerically and by experiment that for particles in a free stream the multi-valuedness and the shot noise need not prohibit measurements in the sub-micron size range. The major source of phase error results from light scattered form objects or material other than the particle inside the measuring volume. Using an optical set-up with nearly counter-propagating incident beams and a large angle between the detectors, measurements were obtained for particle diameters down to 200 nm, and it is estimated that with some improvements in receiver optics measurement down to 100 nm will be possible.  相似文献   

16.
Photon correlation spectroscopy (PCS) is a technique to measure rapidly particle size in the sub-micrometre region. The use of PCS is, however, limited by concentration. The upper limit is due to multiple scattering of the incident light and the lower limit is determined by the fact that fluctuations of the number of particles in the measuring zone have a significant influence on the apparent diffusion coefficient. In this paper a signal processing method is described which differentiates this influence. With this system the lower limit is no longer limited to about 100 particles in the measuring volume corresponding to a concentration of 109 particles/cm3. The limitation is now the intensity of the scattered light, which becomes too weak at a concentration of about 50 particles/cm3. As a consequence of this work, a revision to the basic theory of PCS may be necessary. Moreover, the new processing method also permits the measurement of the particle concentration in the sample.  相似文献   

17.
紫外光与降雨粒子相互作用发生散射,散射光特性改变能够反映降雨粒子的相关物理特性(如粒子尺寸参数、浓度、形态),因此研究粒子的物理参数对散射光特性的影响对有效提高光谱法定量探测降水的精度有很大意义。由于雨滴在非球形降水粒子中具有代表性,以群雨滴粒子为例,采用T矩阵理论,利用紫外光直视和非直视单次散射模型,分析了入射光波长、群雨滴粒子形态、降雨强度、粒径大小与散射光强之间的关系。并用蒙特卡洛方法仿真分析了非球形群雨滴粒子在不同降雨强度和粒径下散射角与散射光强之间的关系,以及降雨环境中的风切变对紫外光散射特性的影响。通过理论及仿真分析,得到了不同群雨滴粒子形态下的路径损耗,不同降雨强度、风切变率和粒径下的散射光强分布。仿真结果表明:在紫外光直视与非直视通信方式下,降雨环境中的通信质量比晴天条件下的通信质量差,即路径损耗增大。当粒径分布已知时,随着降雨强度的增大,衰减系数增大,路径损耗增加,且直视通信方式的路径损耗比非直视降低7 dB左右。随着降雨强度、风切变率和粒子粒径的增大,散射光强曲线整体呈下降趋势,其中,降雨强度的变化对散射光强分布影响程度最大。相同通信距离时,不同降雨强度下的紫外光散射光强分布均随着散射角的增大而减小,当散射角继续增大到90°时,有效散射体体积逐渐减小,接收到的光子能量减小,暴雨中的散射光强衰减程度最大。相同降雨强度下考虑风切变时,相比较无风时的路径损耗增大5 dB左右。除此之外,还研究了椭球形和切比雪夫形粒子对紫外光散射光强的影响,结果表明当粒子粒径分布相同时,椭球形粒子的散射光强衰减较广义切比雪夫形粒子大。根据散射粒子的散射光强分布以及路径损耗能够区分雨滴粒子是否由相同粒径及形态组成,为粒子测量提供理论基础。分析降水中群雨滴粒子的光散射特性,为提高光谱法评估降水衰减的数值模拟方面提供理论依据,为光学技术在探测识别降水现象等气象领域的广泛应用提供了设计参考。  相似文献   

18.
Laser Doppler anemometry (LDA) is one of the most advanced optical measuring techniques for flow velocities and is widely used in industrial and academic laboratories. Based on numerous applications in the past, there is no doubt that LDA is one of the most accurate flow measuring techniques. However, recent investigations have shown that the period lengths of LDA signal bursts are not as constant as one might expect within the individual burst. This can induce an additional scatter in the signal frequency and in the determination of flow velocity from individual bursts. This paper describes experimental investigations which show qualitatively and quantitatively that the particle passage through the laser beams shortly before the point of intersection, i. e. the LDA measuring volume, yields a distorted LDA fringe pattern. The latter results in a scatter of the measured velocity data for those particles passing the center of the measuring volume at the same time.  相似文献   

19.
A numerical investigation was made of the generation and behaviour of the LII signal in optically dense combusting sprays at conditions similar to those in the combustion chamber of compression ignition engines and gas turbines. The influence of particle size, particle morphology and size distribution on the behaviour of the LII signal, and the scattering and absorption of light, and the consequences that different calibration procedures have on the accuracy of the results were studied. Results show that, as the particle size or aggregation increases, light extinction is not caused only by absorption but also by scattering, which contributes more than 10% to the total extinction of light. Particle shape effects are important, irrespective of particle size. The form, soot concentration gradients and optical thickness of the flame cause an uneven laser fluence across the measuring volume that affects the generation of the LII signal. In addition, the quotient between the transmitted and incoming laser pulses across the flame borders can be as small as a percentage of unity. The interpretation of the induced signal is further challenged by the loss of signal between the measuring volume and the detection arrangement, thus causing the detection of spectrally distorted and weaker signals with an erroneous profile of the local amount of carbonaceous particles. An appropriate calibration procedure must be followed to obtain results that are quantitatively representative. External calibration was found to be inappropriate for these systems since it can lead one to underestimate the local volume fraction for almost two orders of magnitude. Implementing an in situ calibration along a line can lead to underestimate or overestimate the local mean volume fraction by a factor of two. However, the use of an in situ calibration procedure using a laser sheet that propagates through the complete measuring volume can reduce the error in estimating the mean soot volume fraction to a 30%. The latter was found to be the most adequate among the studied calibration routines.  相似文献   

20.
Barkey B  Liou KN 《Optics letters》2001,26(4):232-234
We report on a small, lightweight polar nephelometer for the measurement of the light-scattering properties of cloud particles, specifically designed for use on a balloonborne platform in cirrus cloud conditions. The instrument consists of 33 fiber-optic light guides positioned in a two-dimensional plane from 5 degrees to 175 degrees that direct the scattered light to photodiode detectors-amplifier units. The system uses an onboard computer and data acquisition card to collect and store the measured signals. The instrument's calibration is tested by measurement of light scattered into a two-dimensional plane from small water droplets generated by an ultrasonic humidifier. Excellent comparisons between the measured water-droplet scattering properties and expectations generated by Mie calculation are shown. The measured scattering properties of ice crystals generated in a cold chamber also compare reasonably well with the theoretical results based on calculations from a unified theory of light scattering by ice crystals that use the particle size distribution measured in the chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号