首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The step operators of the two-dimensional isotropic harmonic oscillator are shown to be separable into the basis elements of two disjoint Heisenberg Lie algebras. This separability leads to two sets of irreducible tensors, each of which is based upon its associated underlying Heisenberg Lie algebra. The matrix elements of these tensors are evaluated, along with those of some vibrational operators of physical interest. The possibility of other irreducible tensors are discussed and their usefulness is compared with that of those found here. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 343–357, 1998  相似文献   

2.
A formula is derived that allows one to determine the matrix elements of an arbitrary integral reciprocal power of the dimensionless displacement coordinate q of the harmonic oscillator from those ofq –1 in an exact manner. This relation is obtained from the use of the chain rule and irreducible tensors expressed in terms of the creation and annihilation operators of the harmonic oscillator.  相似文献   

3.
A mapping of 2×2 matrices into the space of single boson operators is shown to lead to the angular momentum operators that give rise to irreducible tensors for the harmonic oscillator. The mapping may also be used to define an axis of quantization. A rotation about this axis induces a wave function and Hamiltonian that may be applied to the study of internal rotations in molecules. The example of a molecule containing two coaxial symmetric tops is presented as a case in point. The case of a potential with a high barrier leads to the approximation of an internal rotation as a torsional oscillator and, consequently, to torsional oscillator tensors whose properties are the same as those of the harmonic oscillator. The possibility of studying more complex potentials is discussed. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 65 : 305–315, 1997  相似文献   

4.
It is shown that the Heisenberg Lie algebra of the nondegenerate harmonic oscillator leads to a basis {J+, J0, J?} of LASU (2). The Hamiltonian of the system is proportional to J0, and the basis elements give rise to irreducible tensors in the associative enveloping algebra of the Heisenberg Lie algebra. The construction of these irreducible tensors is studied with special attention being paid to the case in which they act upon a single vector space spanned by the harmonic oscillator basis functions. A tensor coupling rule is developed, and useful application is made of it in the calculation of general expressions for vibrational operators and their matrix elements. Throughout, the value of the additional algebraic quantum numbers (l, m) is emphasized.  相似文献   

5.
The approximate eigenfunctions of the Morse oscillator, expressed in terms of Laguerre polynomials, are shown to form an approximately orthogonal basis. Analytic expressions for the matrix elements of common operators are obtained within this representation. With such matrix elements in closed form, the Morse oscillator becomes, as the harmonic oscillator has been, a practical building block in molecular theory.  相似文献   

6.
Relying on our earlier results in the unitary group Racah-Wigner algebra, specifically designed to facilitate quantum chemical calculations of molecular electronic structure, the tensor operator formalism required for an efficient evaluation of one- and two-body matrix elements of molecular electronic Hamiltonians within the spin-adapted Gel'fand-Tsetlin basis is developed. Introducing the second quantization-like creation and annihilation vector operators at the unitary group [U(n)] level, appropriate two-box symmetric and antisymmetric irreducible tensor operators as well as adjoint tensors are defined and their matrix elements evaluated in the electronic Gel'fand-Tsetlin basis as single products of segment values. Using these tensor operators, the matrix elements of one- and two-body components of a general electronic Hamiltonian are found. Explicit expressions for all relevant quantities pertaining to at most two-column irreducible representations that are required in molecular electronic structure calculations are given. Relationships with other approaches and possible future extensions of the formalism to partitioned bases or spin-dependent Hamiltonians are discussed.On leave from: Department of Chemistry, Xiamen University, Xiamen, Fujian, PR China.  相似文献   

7.
The addition theorem for radiative multipole operators, i.e., electric-dipole, electric-quadropole, or magnetic-dipole, etc., is derived through a translational transformation. The addition theorem of μth component of the angular momentum operator, L μ (r), is also derived as a simple expression that represents a general translation of the angular momentum operator along an arbitrary orientation of a displacement vector and when this displacement is along the Z-axis. The addition theorem of the multipole operators is then used to analytically evaluate the matrix elements of the electric and magnetic multipole operators over the basis functions, the spherical Laguerre Gaussian-type function (LGTF), . The explicit and simple formulas obtained for the matrix elements of these operators are in terms of vector-coupling coefficients and LGTFs of the internuclear coordinates. The matrix element of the magnetic multipole operator is shown to be a linear combination of the matrix element of the electric multipole operator  相似文献   

8.
. Molecular matrix elements of a physical operator are expanded in terms of polycentric matrix elements in the atomic basis by multiplying each by a geometrical factor. The number of terms in the expansion can be minimized by using molecular symmetry. We have shown that irreducible tensor operators can be used to imitate the actual physical operators. The matrix elements of irreducible tensor operators are easily computed by choosing rational irreducible tensor operators and irreducible bases. A set of geometrical factors generated from the expansion of the matrix elements of irreducible tensor operator can be transferred to the expansion of the matrix elements of the physical operator to compute the molecular matrix elements of the physical operator. Two scalar product operators are employed to simulate molecular two-particle operators. Thus two equivalent approaches to generating the geometrical factors are provided, where real irreducible tensor sets with real bases are used. Received: 3 September 1996 / Accepted: 19 December 1996  相似文献   

9.
The ladder operators for the Goldman and Krivchenkov anharmonic potential have been derived within the algebraic approach. The method is extended to include the rotating oscillator. The coherent states for the Goldman and Krivchenkov oscillator, which are the eigenstates of the annihilation operator and minimize the generalized position-momentum uncertainty relation, are constructed within the framework of supersymmetric quantum mechanics. The constructed ladder operators can be a useful tool in quantum chemistry computations of non-trivial matrix elements. In particular, they can be employed in molecular vibrational–rotational spectroscopy of diatomic molecules to compute transition energies and dipole matrix elements.  相似文献   

10.
Symmetry plays an essential role in understanding optical activities of a molecule in infrared and Raman vibrational spectroscopy as well as in nonlinear optical vibrational spectroscopy. Each vibrational mode belongs to an irreducible representation of the underlying symmetry group. In this paper, using the alpha-helical polypeptide symmetry as an example, we calculate all the third rank nonzero hyper-Raman tensors as well as the infrared and Raman tensors by applying the projection operators to each irreducible species. We demonstrate that the projection operator method provides selection rules for the infrared, Raman, and hyper-Raman vibrational transitions and also other nonlinear optical spectroscopy such as sum frequency generation and the four-, five-, and six-wave mixing coherent vibrational transitions. Specific expressions for all nonzero elements of the corresponding nonlinear susceptibility tensors in a laboratory-fixed coordinate frame are also deduced.  相似文献   

11.
The addition theorem for radiative multipole operators, i.e., electric-dipole, electric-quadropole or magnetic-dipole, etc., is derived through a translational transformation. The addition theorem of the μth component of the angular momentum operator, Lμ (r), is also derived as a simple expression that represents a general translation of the angular momentum operator along an arbitrary orientation of a displacement vector and when this displacement is along the Z-axis. The addition theorem of the multipole operators is then used to analytically evaluate the matrix elements of the electric and magnetic multipole operators over the basis functions, the spherical Laguerre Gaussian-type function (LGTF), . The explicit and simple formulas obtained for the matrix elements of these operators are in terms of vector-coupling coefficients and LGTFs of the internuclear coordinates. The matrix element of the magnetic multipole operator is shown to be a linear combination of the matrix element of the electric multipole operator.  相似文献   

12.
An efficient angular momentum method is presented and used to derive analytic expressions for the vibration-rotational kinetic energy operator of polyatomic molecules.The vibration-rotational kinetic energy operator is expressed in terms of the total angular momentum operator J,the angular momentum operator J and the momentum operator p conjugate to Z in the molecule-fixed frame Not only the method of derivation is simpler than that in the previous work,but also the expressions ot the kinetic energy operators arc more compact.Particularly,the operator is easily applied to different vibrational or rovibrational problems of the polyatomic molecules by variations of matrix elements Gn of a mass-dependent constant symmetric matrix  相似文献   

13.
Succinct expressions for the matrix elements of various vibrational operators have been derived in the basis of the nondegenerate harmonic oscillator. Among these are the matrix elements of and , which are found to be dependent upon two quantities and their derivatives. Furthermore, the derivative property of the commutator is used to obtain an explicit expression for the derivatives of an operator in terms of its nested commutator with the conjugate momentum. It may be applied to any of the above cases to obtain the matrix representatives of expressions such as the mixed products , for example. In addition, a simple expression for 1/q is given and its derivatives may be evaluated by this commutator technique. Also the matrix elements of a Gaussian-type operator has been evaluated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The application of contact transformation theory to the perturbed harmonic oscillator is reexamined in the light of the harmonic oscillator tensors previously presented. It is found that the recasting of the formalism of this problem in terms of harmonic oscillator tensors results in great simplifications, most of which stem from the introduction of the additional algebraic quantum numbers (l, m). The order of magnitude of each fragment of the Hamiltonian is easily recognizable, and the diagonal and nondiagonal parts contained therein are readily identifiable. The determination of the contact transformation operator is reduced to a simple formula. First, an analysis is made for a single mode of vibration, and it is subsequently extended to a multimode case. The perturbed diatomic vibrator is presented as an example.  相似文献   

15.
A procedure is described for the efficient evaluation of the energy matrix elements necessary for atomic configuration-interaction calculations. With the orbital configurations of an N electron system in spin state S written as the irreducible representations [21/2N?S, 12S] of the permutation group S( N ), it is possible to evaluate readily the energy matrix elements of a spin-free Hamiltonian expressed in terms of the generators of the unitary group. We show how the use of angular momentum ladder operators permits the effective generation of a basis of eigenstates of ??2, ??z as well as ??2 and ??z, for which the energy matrix elements may be evaluated with ease.  相似文献   

16.
N. Nero 《Chemical physics》1984,91(1):89-100
A new method is presented to compute cartesian tensors in the expansion of curvilinear internal coordinates. Second- and higher-order coefficients are related to the metrics of the space of displacements. Components of the metric tensor are taken from existing tables of inverse kinetic energy matrix elements or, when rotations are involved, derived from general invariance conditions of scalars within a molecule. This leads to a tensor formalism particularly convenient in dealing with curvilinear coordinates in anharmonic calculations of vibrational frequencies. Formulae are given for elements of the potential energy matrix, related to quadratic and cubic force constants in terms of Christoffel symbols. The latter quantities are also used in the expansion of redundancy relations, with explicit coefficients given up to the third order.  相似文献   

17.
The isospin basis is put into operation for investigation of atomic configurations, having two shells of equivalent electrons, characterized by the same orbital (LS coupling) or total (jj coupling) angular momenta of each electron. Tensorial properties of both the operators and the wave functions are studied in this basis. The two-particle operator is expressed in terms of the tensors irreducible in the isospin space. The problem of the additional classification of the levels is considered. The accuracy of the quantum numbers of the isospin basis in jj coupling scheme is discussed.  相似文献   

18.
We construct bases for the irreducible representations of the rotation group O(3) which are symmetry adapted to a Crystallographic point group. We obtain explicit expressions for the cubic groups, which are valid for arbitrary values of the angular momentum quantum number l. Our method yields an efficient algorithm for both analytical and numerical work. An explicit formula for the multiplicities of an irreducible representation for the cubic groups in an arbitrary angular momentum term l is also derived.  相似文献   

19.
Vibrational corrections to the charge and momentum densities of H2 are calculated using the Wang wavefunction and various expressions for the dependence of the effective nuclear charge on the interatomic distance. Both harmonic oscillator and Morse potentials are employed for the vibrational wavefunctions, and excited as well as ground vibrational states are considered. The corrections to the momentum density, though considerably smaller than the charge density corrections, appear to be somewhat more sensitive qualitatively to the choice of both nuclear and electronic wavefunctions.  相似文献   

20.
We describe an efficient new algorithm which extends the range of feasible shell model calculations. This algorithm is applicable to single shell and multiple shell configurations, where two or more quantum numbers (e.g., L and S) are required to label the states within each shell. The algorithm proceeds by factoring the shell model Hilbert space into a product of subspaces, one for each angular momentum. N-particle wave functions are built up recursively from N – 1 particle wave functions. Three kinds of N – 1- to N-particle coefficients are required to carry out the construction of N-particle electron (or fermion) states from N – 1 particle states. These are (1) coefficients of fractional parentage (CFP s) within a single shell, (2) outerproduct isoscalar factors (OISF s) within a single angular momentum subspace, and (3) innerproduct isoscalar factors (IISF s) which describe how multishell states within the complementary angular momentum subspaces are combined to form totally antisymmetric wave functions. All three types of N – 1- to N-particle coefficients are generated recursively using a single powerful and efficient matrix diagonalization algorithm. Matrix elements of single particle creation and annihilation operators are expressed in terms of single particle CFP s, OISF s, and IISF s. We also describe an efficient algorithm for computing matrix elements of products of creation and anihilation operators by inserting and summing over complete sets of intermediate states. This is the Feynman-like sum over path overlaps procedure. Timing benchmarks are presented comparing the new Drexel University shell model (DUSM ) code with a state of the art shell model code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号