首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

2.
Summary. In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

3.
The primary fluorescent chlorophyll catabolite 1 (Ca‐FCC‐2) from sweet pepper (Capsicum annuum) has similar optical properties, but is slightly less polar than the primary FCC (pFCC; 2 ) from senescent cotyledons of oilseed rape (Brassica napus). Ca‐FCC‐2 was prepared from pheophorbide a using an enzyme extract from ripe C. annuum chromoplasts. The catabolite Ca‐FCC‐2 ( 1 ) could be determined from fast‐atom‐bombardment (FAB) mass spectra to be an isomer of pFCC ( 2 ). The constitution of Ca‐FCC‐2 was determined by homo‐ and heteronuclear magnetic‐resonance experiments and was found to be identical to that of pFCC. Further 2D‐homonuclear spectra of Ca‐FCC‐2 revealed it to differ from pFCC by the configuration at the methine atom C(1), whose configuration results from the action of red chlorophyll catabolite reductase (RCCR). The occurrence of two primary FCCs that are epimeric at C(1) provides a structural basis for the recent observation of two types of RCCRs among higher plants.  相似文献   

4.
In extracts of senescent leaves of spinach (Spinacia oleracea) that had degreened naturally after the onset of flowering, four colorless compounds, which had characteristic UV/VIS properties of nonfluorescent chlorophyll catabolites (NCCs), were detected by HPLC. From the extracts of 58.7 g of senescent leaves of Sp. oleracea, a two‐stage HPLC purification procedure provided ca. 15 μmol of So‐NCC‐2, the most abundant polar NCC in the leaves of this vegetable. So‐NCC‐2 was isolated as a slightly yellow powder and analyzed by spectroscopic means. The high‐resolution mass spectra indicated that So‐NCC‐2 has the same molecular formula as Hv‐NCC‐1 from barley (Hordeum vulgare), the first non‐green chlorophyll catabolite from a higher plant to be structurally analyzed. Homo‐ and hetero‐nuclear NMR spectroscopy indicated So‐NCC‐2 to have the same constitution as its epimer Hv‐NCC‐1, and to differ from the latter by the configuration at C(1). The catabolite from spinach could be identified with one of the products from OsO4 dihydroxylation at the vinyl group of the main NCC from Cercidiphyllum japonicum. Chlorophyll breakdown in spinach and in C. japonicum apparently involves an enzyme‐catalyzed reduction that occurs with the same stereochemical sense at C(1), but opposite to that in barley.  相似文献   

5.
1‐Formyl‐19‐oxobilin‐type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19‐dioxobilin‐type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild‐type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs.  相似文献   

6.
In senescent leaves, chlorophyll typically is broken down to colorless and essentially photo‐inactive phyllobilanes, which are linear tetrapyrroles classified as “nonfluorescent” chlorophyll catabolites (NCCs) and dioxobilane‐type NCCs (DNCCs). In homogenates of senescent leaves of the tropical evergreen Spathiphyllum wallisii, when left at room temperature and extracted with methanol, the major endogenous, naturally formed NCC was regio‐ and stereoselectively oxidized (in part) to a mixture of its 15‐hydroxy and 15‐methoxy derivative. In the absence of methanol in the extract, only the 15‐OH‐NCC was observed. The endogenous oxidation process depended upon molecular oxygen. It was inhibited by carbon monoxide, as well as by keeping the leaf homogenate and extract at low temperatures. The remarkable “oxidative activity” was inactivated by heating the homogenate for 10 min at 70 °C. Upon addition of a natural epimeric NCC (epiNCC) to the homogenate of senescent or green Sp. wallisii leaves at room temperature, the exogenous epiNCC was oxidized regio‐ and stereoselectively to 15‐OH‐epiNCC and 15‐OMe‐epiNCC. The identical two oxidized epiNCCs were also obtained as products of the oxidation of epiNCC with dicyanodichlorobenzoquinone (DDQ). Water elimination from 15‐OH‐epiNCC occurred readily and gave a known “yellow” chlorophyll catabolite (YCC). The endogenous oxidation process, described here, may represent the elusive natural path from the colorless NCCs to yellow and pink coloured phyllobilins, which were found in (extracts of) some senescent leaves.  相似文献   

7.
Chlorophyll breakdown in higher plants occurs by the so called “PaO/phyllobilin” path. It generates two major types of phyllobilins, the characteristic 1‐formyl‐19‐oxobilins and the more recently discovered 1,19‐dioxobilins. The hypothetical branching point at which the original 1‐formyl‐19‐oxobilins are transformed into 1,19‐dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19‐dioxobilin‐type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19‐dioxobilin that accumulated in fully senescent leaves.  相似文献   

8.
Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll‐derived bilin‐type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles.  相似文献   

9.
In senescent leaves chlorophyll (Chl) catabolites typically accumulate as colorless tetrapyrroles, classified as formyloxobilin-type (or type-I) or dioxobilin-type (type-II) phyllobilins (PBs). Yellow type-I Chl catabolites (YCCs) also occur in some senescent leaves, in which they are generated by oxidation of colorless type-I PBs. A yellow type-II PB was recently proposed to occur in extracts of fall leaves of grapevine (Vitis vinifera), tentatively identified by its mass and UV/Vis absorption characteristics. Here, the first synthesis of a yellow type-II Chl catabolite (DYCC) from its presumed natural colorless type-II precursor is reported. A homogenate of a Spatiphyllum wallisii leaf was used as “green” means of effective and selective oxidation. The synthetic DYCC was fully characterized and identified with the yellow grapevine leaf pigment. As related yellow type-I PBs do, the DYCC functions as a reversible photoswitch by undergoing selective photo-induced Z/E isomerization of its C15=C16 bond.  相似文献   

10.
Colorless nonfluorescent chlorophyll (Chl) catabolites (NCCs) are formyloxobilin‐type phyllobilins, which are considered the typical products of Chl breakdown in senescent leaves. However, in degreened leaves of some plants, dioxobilin‐type Chl catabolites (DCCs) predominate, which lack the formyl group of the NCCs, and which arise from Chl catabolites by oxidative removal of the formyl group by a P450 enzyme. Here a structural investigation of the DCCs in the methylesterase16 mutant of Arabidopsis thaliana is reported. Eight new DCCs were identified and characterized structurally. Strikingly, three of these DCCs carry stereospecifically added hydroxymethyl groups, and represent bilin‐type linear tetrapyrroles with an unprecedented modification. Indeed, DCCs show a remarkable structural parallel, otherwise, to the bilins from heme breakdown.  相似文献   

11.
《化学:亚洲杂志》2017,12(7):759-767
Zinc chlorophyll derivatives Zn‐1 – 3 possessing a tertiary amino group at the C31 position have been synthesized through reductive amination of methyl pyropheophorbide‐d obtained from naturally occurring chlorophyll‐a . In a dilute CH2Cl2 solution as well as in a dilute 10 %(v/v) CH2Cl2/hexane solution, Zn‐1 possessing a dimethylamino group at the C31 position showed red‐shifted UV/Vis absorption and intensified exciton‐coupling circular dichroism (CD) spectra at room temperature owing to its dimer formation via coordination to the central zinc by the 31‐N atom of the dimethylamino group. However, Zn‐2/3 bearing 31‐ethylmethylamino/diethylamino groups did not. The difference was dependent on the steric factor of the substituents in the tertiary amino group, where an increase of the carbon numbers on the N atom reduced the intermolecular N⋅⋅⋅Zn coordination. UV/Vis, CD, and 1H NMR spectroscopic analyses including DOSY measurements revealed that Zn‐1 formed closed‐type dimers via an opened dimer by single‐to‐double axial coordination with an increase in concentration and a temperature decrease in CH2Cl2, while Zn‐2/3 gave open and flexible dimers in a concentrated CH2Cl2 solution at low temperature. The supramolecular closed dimer structures of Zn‐1 were estimated by molecular modelling calculations, which showed these structures were promising models for the chlorophyll dimer in a photosynthetic reaction center.  相似文献   

12.
A much improved synthesis and isolation of tribenzylbismuth (Bn3Bi where Bn = CH 2 C 6 H 5 ) compared to the previous literature preparation is presented. Using the described method, a ≥ 3-fold increase in yield of analytically pure compound is obtained, providing Bn 3 Bi in synthetically useful quantities. Additionally, full spectral characterization has been achieved ( 1 H and 13 C NMR, IR) for the first time. Thermal analysis was performed via condensed phase pyrolysis and differential scanning calorimetry (DSC). The DSC data was used to estimate Δ H f (Bn 3 Bi) liquid .  相似文献   

13.
The partial synthesis of 10,22-dihydro-4,5-dioxo-4,5-secopheophorbide a ( 1 ) from pheophorbide a methyl ester (2) is described. A regioselective, photooxygenolytic reaction of (pheophorbidato a methyl ester)cadmium(II)( 3 ) provides the entry to the crucial 4,5-secoporphinoid structure in form of the (10,22-dihydro-4,5-dioxo-4,5-seco-pheophorbidato a methyl ester)cadmium(II) ( 4 ). The hydride reduction of this 4,5-dioxo-4,5-secophytoporphyrin ester occurs selectively at the ‘eastern’ meso-position to lead (after demetallation) to 10,22-dihydro-4,5-dioxo-4,5-secopheophorbide a methyl ester ( 5 ). This oxobilin-carbaldehyde has the structure assigned earlier to an ester of an isolation form of the red pigment(s) from Chlorella protothecoides. Hydrolysis of the propanoate ester function of 5, selectively catalyzed by pig liver esterase, then yields the title compound 1 . The red tetrapyrrole 1 may represent an intermediary chlorophyll catabolite in degreening plants.  相似文献   

14.
The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles.  相似文献   

15.
Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated.  相似文献   

16.
A simple and green analytical procedure based on chlorophyll a is presented for the determination of Hg2+ ion. Chlorophyll a was extracted and purified from the leaves of pea and is employed as a reagent for analysis of Hg2+ ion. It displays remarkable fluorescence emission at 674 nm when excited at 412 nm. The emission intensity decreased significantly on exposure to various concentrations of Hg2+ ion. This forms the basis for the determination of Hg2+ ion. The proposed method was evaluated for sensitivity and selectivity. The linear concentration range was found to be 2.0–10 μM with r2 = 0.997 and the limit of detection for Hg2+ ion was 1.3 μM. Ions including Pb2+, Cd2+, Ag+, Zn2+, Co2+, Ni2+, Cu2+, Mg2+, Mn2+, Ru3+, Er3+, K+, Na+, NH4+, Cl, NO3, CH3COO and SO42− did not interfere with the measurement of Hg2+ ion even at 500-fold excess. Since chlorophyll a is widely available in the leaves of most plants, and the extraction and purification process is simple, this technique can provide an alternative, sensitive and economical way to determine Hg2+ ion.  相似文献   

17.
The 13C NMR spectra of C-10 epimeric chlorophylls a and a′, pheophytins a and a′, pyrochlorophyll a and pyropheophytin a have been recorded and assigned by chemical shift comparison, by long-range selective 1H decoupling experiments and by the examination of the fully coupled spectra. Various factors influencing the 13C chemical shifts of the chlorophyll derivatives, e.g. the coordination of magnesium to the chlorin nucleus, the effect of solvent and the steric strain at the periphery of the macrocycle, have been examined. The 13C NMR spectra of chlorophyll a measured in acetone-d6 and tetrahydrofuran-d8 (THF) were compared, and remarkable solvent effects on the 13C chemical shifts were observed. These effects were interpreted mostly in terms of specific chlorophyll-solvent interactions. Different electron donor and steric properties of acetone and THF were considered to cause conformational alterations in the macrocycle, induced by the ligation of the solvent molecule(s) to the axial position(s) of the central magnesium atom of chlorophyll a. These results show that 13C NMR spectroscopy is a method of high information value for investigations of the unique electron donor acceptor (EDA) properties of the chlorophylls. The structural differences between the C-10 epimeric chlorophylls and pheophytins were examined in terms of the substituent chemical shift (SCS) parameters for the C-10 methoxycarbonyl group. The analysis showed that the change from the (10R) to the 10(S) configuration induces conformational alterations in the whole macrocycle which are, however, most prominent in rings IV and V. Owing to the increased steric interaction (repulsion) between the bulky substituents at C-7 and C-10, the peripheral strain is larger in the (10S) form, and is relieved by more pronounced deviations of rings IV and V from the macrocyclic plane compared with the (10R) form. The examination of the SCS parameters also showed that the peripheral steric strain is dissipated to a larger extent over the entire macrocycle in the Mg-free derivatives. These results confirm the previous conclusions based on 1H NMR and CD data. The possible function of chlorophyll a′ in photosynthesis is briefly discussed.  相似文献   

18.
Zinc catalysts incorporated by imino‐benzotriazole phenolate ( IBTP ) ligands were synthesized and characterized by single‐crystal X‐ray structure determinations. The reaction of the ligand precursor ( C1DMeIBTP ‐H or C1DIPIBTP ‐H) with diethyl zinc (ZnEt2) in a stoichiometric proportion in toluene furnished the di‐nuclear ethyl zinc complexes [(μ‐ C1DMeIBTP )ZnEt]2 ( 1 ) and [(μ‐ C1DIPIBTP )ZnEt]2 ( 2 ). The tetra‐coordinated monomeric zinc complex [( C1PhIBTP )2Zn] ( 3 ) or [( C1BnIBTP )2Zn] ( 4 ) resulted from treatment of C1PhIBTP ‐H or C1BnIBTP ‐H as the pro‐ligand under the similar synthetic method with ligand to metal precursor ratio of 2:1. Single‐crystal X‐ray diffraction of bimetallic complexes 1 and 2 indicates that the C1DMeIBTP or C1DIPIBTP fragment behaves a NON‐tridentate ligand to coordinate two metal atoms. Catalysis for ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL), β‐butyrolactone (β‐BL), and lactide (LA) of complexes 1 and 2 was systematic studied. In combination with 9‐anthracenemethanol (9‐AnOH), Zn complex 1 was found to polymerize ε‐CL, β‐BL, and L‐LA with efficient catalytic activities in a controlled character. This study also compared the reactivity of these ROP monomers with different ring strains by Zn catalyst 1 in the presence of 9‐AnOH. Additionally, Zn complex 1 combining with benzoic acid was demonstrated to be an active catalytic system to copolymerize phthalic anhydride and cyclohexene oxide. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 714–725  相似文献   

19.
The reaction of [CpBnFe(η5‐P5)] ( 1 ) (CpBn5‐C5(CH2Ph)5) with CuI selectively yields a novel spherical supramolecule (CH2Cl2)3.4@[(CpBnFeP5)12{CuI}54(MeCN)1.46] ( 2 ) showing a linkage of the scaffold atoms which is beyond the Fullerene topology. Its extended CuI framework reveals an outer diameter of 3.7 nm—a size that has not been reached before using five‐fold symmetric building blocks. Furthermore, 2 shows a remarkable solubility in CH2Cl2, and NMR spectroscopy reveals that the scaffold of the supramolecule remains intact in solution. In addition, a novel 2D polymer [{CpBnFe(η5‐P5)}2{Cu6(μ‐I)23‐I)4}]n ( 3 ) with an uncommon structural motif was isolated. Its formation can be avoided by using a large excess of CuI in the reaction with 1 .  相似文献   

20.
The carbon isotope composition of leaf bulk organic matter was determined on the tropical tree Elaeis guineensis Jacq. (oil palm) in North Sumatra (Indonesia) to get a better understanding of the changes in carbon metabolism during the passage from heterotrophy to autotrophy of the leaves. Leaf soluble sugar (sucrose, glucose and fructose) contents, stomatal conductance and dark respiration, as well as leaf chlorophyll and nitrogen contents, were also investigated. Different growing stages were sampled from leaf rank ?6 to rank 57. The mean values for the δ13C of bulk organic matter were ?29.01 ± 0.9‰ for the leaflets during the autotrophic stage, ?27.87 ± 1.08‰ for the petioles and ?28.17 ± 1.09‰ for the rachises, which are in the range of expected values for a C3 plant. The differences in δ13C among leaf ranks clearly revealed the changes in the origin of the carbon source used for leaf growth. Leaves were 13C‐enriched at ranks below zero (around ?27‰). During this period, the ‘spear’ leaves were completely heterotrophic and reserves from storage organs were mobilised for the growth of these young emerging leaves. 13C‐depletion was then observed when the leaf was expanding at rank 1, and there was a continuous decrease during the progressive passage from heterotrophy until reaching full autotrophy. Thereafter, the δ13C remained more or less constant at around ?29.5‰. Changes in sugar content and in δ13C related to leaf ranks showed an interesting similarity of the passage from heterotrophy to autotrophy of oil palm leaves to the budburst of some temperate trees or seed germination reported in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号