首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

2.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

3.
The methane negative ion chemical ionization (NICI) mass spectra of polycyclic aromatic hydrocarbons are usually dominated by molecular, M? ˙ or M ? H? ions; however, ions resulting from additions to M have also been reported. Some of these ions have been observed at [M + 14]? ˙, [M + 15]?, [M + 30]? and [M + 32]?˙ and have been attributed to reactions with either oxygen-containing impurities in the buffer gas or alkyl radical species generated by ionization of a hydrocarbon buffer gas. In this study, the NICI spectra of fluorene, anthracene and fluoranthene were studied in detail using quadrupole and Fourier transform mass spectrometers. Spectra were acquired when reactive species such as oxygen, water, nitrous oxide and carbon dioxide were added to the nitrogen buffer gas. Experiments with deuterated methane were also carried out. These studies indicated that buffer gas impurities affect the NICI spectra; however, gas-phase ion-molecule reactions were not responsible for all of the observed products. In addition to electron- and ion-molecule reactions, ions were observed that resulted from wall-catalyzed oxidation reactions followed by electron capture. These reactions were enhanced by the addition of oxygen and elevated ion source temperatures. Depending upon the parent PAH structure, oxidation products such as ketones, quinones and anhydrides were formed.  相似文献   

4.
The negative chemical ionization mass spectra of nitrobenzene, ethylene glycol dinitrate and nitroglycerine have been obtained using various reagent ions. For nitrobenzene, [OH]? gives the [M ? H]?, together with [M] ions formed by electron capture, but other reagent ions gave relatively low intensity adduct peaks. Ethylene glycol dinitrate and nitroglycerine gave abundant [M + X]? ions (X = NO2, NO3, Cl, Br, I), together with ions arising from the thermal decomposition of the samples in the heated inlet system. The rate of anion attachment to these compounds is much greater than that to related compounds having only one functional group, and it is suggested that this is due to the participation of the adjacent groups in the bonding between the substrate and anion.  相似文献   

5.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

6.
Secondary ion mass spectra of singly substituted aromatic hydrocarbon/H2SO4 solutions showed intense aromatic molecular ion and protonated aromatic molecule peaks characteristic of dissolved aromatic compounds from a number of aromatic compound classes, including acids, aldehydes, ketones, nitriles and nitrogen heterocycles. The presence of simultaneously abundant peaks for molecular ions and protonated molecules in secondary ion mass spectra of each aromatic compound/sulfuric acid solution is consistent with known or expected gas-phase proton transfer chemistry. The ratio of intensities, M+˙:[M + H]+, appears to be determined by sulfuric acid solution chemistry of the compound. Spectra obtained from 1–2 μl samples were relatively free from chemical noise and persisted for up to 20 min. Detection limits for some substituted aromatic compounds are estimated to be 10?12.  相似文献   

7.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

8.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   

9.
Oxirane chemical ionization (CI) gives numerous ions, including C2H3O+ and C2H5O+. These ions react with organic molecules through various specific ion–molecule reactions such as hydride abstraction, protonation, additions or cycloadditions. Oxirane CI allows discrimination between unsaturated compounds with [M + 43]+ and [M + 57]+ adduct ions and heteroatom functions with [M + 45]+ adduct ion. All are diagnostic ions. Oxirane CI permits selectivity during the ionization process of a mixture and discrimination of isomers.  相似文献   

10.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

11.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

12.
Doubly charged ion mass spectra have been obtained for 42 chlorinated and brominated n-alkane (methyl through octyl) hydrocarbons. A double focusing Hitachi RMU-7L mass spectrometer, operated at 1.6kV accelerating voltage, has been used to measure the spectra. Molecular doubly charged ions have not been observed. Intense fragment ions have been produced from extensive H and halogen loss as well as C? C bond rupture of the parent molecule. The most abundant ions in the doubly charged ion spectra observed in this investigation resulted from reactions of [Cl]2+˙, [Br]2+˙, [CCL2]2+, [C2H2Cl]2+˙, [C3H2]2+, [C3HCl]2+, [C3HBr]2+, [C4H3]2+˙, [C4H4]2+, [C4H6Br]2+˙, [C4H8Br]2+˙, [C5H2]2+, [C6H6]2+, [C6H8]2+ and [C7H8]2+. The prominent doubly charged fragment ions formed by electron impact of the smaller halogenated alkanes generally contained halogen, whereas ions of the type [CnHx]2+ were dominant in the spectra of higher molecular weight mono- and dihalogenated alkanes. Appearance energies of several ions have been measured. A geometry optimized quantum mechanical SCF treatment has been used to compute energies, charge densities and structures of doubly charged halogenated alkane ions.  相似文献   

13.
The fast atom bombardment (FAB) mass spectra of telluronium salts were studied. The spectra exhibit the intact cation (C+) and cluster ions ([M + C]+). The principal fragment ions in the FAB mass spectra of telluronium salts are [RTe]+, [R2Te]+˙, [R2Te − H]+, [RTeR′]+˙, and [RTeR′ + H]+. When the anion was [BPh4], interesting cluster ions such as [M + C − BPh3]+ appeared.  相似文献   

14.
Under positive ion chemical ionization conditions with ammonla at relatively low pressure, aromatic nitro compounds do not form [M + H]+ ions but often form ionic clusters [M + NH4]+ and [M + N2H7]+. Nitrobenzene forms a cluster [2M + NH4]+ and aniline, formed by nucleophilic substitution, leads to a cluster [anilinium ion + nitrobenzene]+. The dinitrobenzenes form [M + NH4]+ clusters and show evidence of nitroaniline formation and clustering. 1,3,5-Trinitrobenzene gives little indication of clustering or of substitution. The six isomers of trinitrotoluene appear to be stabilized by the methyl group and form clusters up to [M + N3H10]+. Nucleophilic substitution leads to dinitrotoluidines, which also form clusters with ammonium ions.  相似文献   

15.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

16.
The relative abundance of [M + H]+ ions in the spectra of different nitriles depends on the nature of the nitrile. A new method for the identification of ion-molecule reactions has been applied, by determining the [M + D]+ ion intensity with respect to the [M + H]+ ion intensity in the spectra of partially deuteriated alkyl cyanides. This intensity ratio is correlated with the hydrogen-deuterium content of the suspected primary ions. In addition not only the reacting primary ions, but also the reactive hydrogen atom in the primary ion could be indicated. There is clear evidence that the proton attached to the nitrogen atom in the H2C?C?N+˙? H rearrangement ion is transferred to the nitrile molecule.  相似文献   

17.
A corona discharge atmospheric pressure ionization source generates the reagent ions, OH? and O? ions in addition to better known O2? ions, when ambient air is used as the carrier. All three ions are gas-phase bases that could form negative ions from organics via proton abstraction. Ionization of simple aromatic hydrocarbons by O2? is thermodynamically not feasible. Simple aromatic hydrocarbons are ionized only by O? and/or OH? to form [M ? H]? ions. However, [M ? H]? ions do not appear in the mass spectrum as they undergo stabilization via clustering with predominantly oxygen atoms.  相似文献   

18.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

20.
Electron impact induced fragmentation of the title compounds obeys a route where the lactam moiety, OCNH, is cleaved first, with the accompanying formation of a cycloalkene ion. This can be verified by low-resolution, high-resolution, B/E and B2/E spectra as well as by collisional activation spectra of, for example, the ions m/z 82 and 67 from 7-azabicyclo[4.2.0]octan-8-one and from cyclohexene. The only, and fairly weak, fragment ions including O and N are [C3H3O]+, [CkH2k-2N]+ (k = 5–8) and [C3H6N]+. The ammonia chemical ionization spectra are also characteristic for all four lactams and show the same dominant ions in all cases, namely [M + 1]+, [M + 1 + NH3]+˙ and [2 M + 1]+˙.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号