首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectral fragmentation of methyl esters of E and Z isomers of 2,3-dichloro-, 2-bromo-3-chloro-, 3-bromo-2-chIoro- and 2,3-dibromopropenoic acids have been investigated. The M peak is shown with all isomers, the [M ? OCH3]+, [M ? X]+, [M ? OCH3 ? CO]+, [M ? OCH3 ? CO ? X] and [M ? OCH3 ? CO ? X ? X]+ ions constituting abundant peaks in all spectra. The results, particularly from the bromochloro isomers, show that a halogen atom is eliminated from the 3- rather than the 2- position and from the Z rather than the E isomer. Bromine as a bulky atom is preferentially lost.  相似文献   

2.
The mass spectra of five diazaphenanthrenes formed by photochemical cyclodehydrogenation of styryl diazines are investigated. It is shown that fragmentation of these compounds starts almost exclusively at the heterocyclic part of the molecule and proceeds by competitive α-cleavage. From the intensity ratios of the ions [M ? H˙]+, [M ? HCN]+˙, [M ? N2]+˙ and [M ? 2 HCN]+˙ generated in this way, each isomer can unequivocally be identified.  相似文献   

3.
A systematic study on the electron impact mass spectra of all nine chlorinated catechols in presented. Metastable ion analysis was used to elucidate the fragmentation pathways. The influence of the position of the chloro substituents can be used to distinguish the structural isomers. In this respect the most characteristic fragment ions are [M? CHl]+˙, [M? HCOOH]+˙, [M? COCl]+, [M? HCl? CO]+˙, [M? CHOCl]+˙ and [M? HCl? HCl]+˙.  相似文献   

4.
Under electron impact, 3-aryl-4-hydroxyisoquinolines form [M – H]+, [M – CO]+ and [M – H – CO]+ ions with a subsequent elimination of HCN or CH3CN. A cyclic structure for the [M – H]+ ion is suggested. The primary act of fragmentation of the corresponding methyle ether derivatives is the loss of CH3?, as well as H?; the further fragmentatio is similar to that described above. It has been established that the unusual [M – H]+, [M – OH]+ and [M – CH5?]+ ions are formed when 8 fragments. Fragmentation schemes for all compounds are proposed based upon high resolution mass spectra and deuterated analogues.  相似文献   

5.
Mass Spectra of unsubstituted, 2-methyl-, 3-methyl and 2,3-dimethylchromones were examined. These compounds showed [RDA]+˙ and [RDA + H]+ ions as characteristc ions, together with [M? H]+,[M? CO]+˙,[M? CHO]+ and [RDA? CO]+˙ ions. Based on deuterium labelling experiments and measurement of metastable peaks by the ion kinetic energy defocusing technique, the origin of transferred hydrogen in the [RDA + H]+ ion was clarified. The mechanism of the [RDA + H]+ ion formation is discussed.  相似文献   

6.
The study of the loss of HCN from the molecular ions of [2-13C]indole and [3-13C]indole shows that, to a good approximation, only the two carbon atoms of the pentagonal ring are involved in this fragmentation process, contrary to the behaviour of the H atoms; the C-2 atom is eliminated predominantly, chiefly in the ion source (85–90%) and a little less in the metastable energy range (75–80%). The losses of 13CCH3˙ and C2H3˙ from the [M? H12CN] ions of the two compounds suggest the occurrence of different structures, providing evidence for several mechanisms of HCN elimination.  相似文献   

7.
The mass spectra of several substituted diphenylacetylenes are reported and the [metastable ion]/[daughter ion] ratios for the isomeric chloro- and bromodiphenylacetylenes suggested substituent scrambling in their respective molecular ions. The metastable ion data also indicated equilibration of the chloro substituents in a series of isomeric dichlorodiphenylacetylenes. In addition, the fragmentation patterns for the amino- and nitrodiphenylacetylenes differed somewhat from most other aromatic amino and nitro compounds. The aminodiphenylacetylenes fragment with expulsion of H2CN from the molecular ion and the expulsion of HCN from the [M – 1]+ ion was only a relatively minor reaction. 4-Nitrodiphenylacetylene loses NO from the molecular ion and OH from the [M – NO]+˙, whereas the more familiar loss of OH from the molecular ion was not observed. The mass spectra of several deuterated substituted diphenylacetylenes clearly showed extensive (but not complete) H/D equilibration in the molecular ion or some subsequent decomposition ion. Comparative studies between 4-chloro and 4-bromo substituted biphenyl, diphenylacetylene and diphenyldiacetylene indicated similar degrees of H/D randomization, and the results showed that the ? C?C? group did not inhibit the proton equilibration between the two phenyl groups.  相似文献   

8.
The charge exchange mass spectra of 14 C6H12 isomers have been determined using [CS2], [COS], [Xe], [CO], [N2] and [Ar] as the major reactant ions covering the recombination energy range from ∼10.2 eV to ∼15.8 eV. From the charge exchange data breakdown graphs have been constructed expressing the energy dependence of the fragmentation of the isomeric [C6H12] molecular ions. The electron impact mass spectra are discussed in relation to these breakdown graphs and approximate internal energy distribution functions derived from photoelectron spectra.  相似文献   

9.
The major mass spectrometric fragments of ms-tetraphenylporphin and ms-tetra(p-chloro)phenylporphin are [M ? H]+˙ and [M ? Cl]+˙, respectively. Metal derivatives of these compounds give a modified characteristic fragmentation pattern with peak groups ending in the ions [M ? 4H]+˙, [M ? ? ? 5H]+˙ and [M ? 2? ? 2H]+˙ for the metallo ms-tetraphenylporphins, and [M ? ?Cl ? 2Cl ? 3H]+˙ and [M ? 2?Cl ? Cl ? H]+˙ for Mgms-tetra(p-chloro)phenylporphin. Deuterated metal derivatives indicate random hydrogen loss from both phenyl and pyrrole carbons. However, metal substituents do not significantly modify the fragmentation pattern in the case of ms-tetra(p-methoxy)phenylporphin. These patterns can be explained in terms of aromatic stabilization of the fragmentation products, coupled with charge localization on the π system in the free base, on the metal atom in the metallo derivatives and on the methoxy function in the p-methoxyphenyl derivative.  相似文献   

10.
The fast atom bombardment (FAB) mass spectra of telluronium salts were studied. The spectra exhibit the intact cation (C+) and cluster ions ([M + C]+). The principal fragment ions in the FAB mass spectra of telluronium salts are [RTe]+, [R2Te]+˙, [R2Te − H]+, [RTeR′]+˙, and [RTeR′ + H]+. When the anion was [BPh4], interesting cluster ions such as [M + C − BPh3]+ appeared.  相似文献   

11.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

12.
The study of the loss of HCN from the molecular ions of [1-13C]-, [2-13C]- and [3-13C]-indolizine shows that, if the C-3 atom is eliminated predominantly, as may be expected, the C-2 atom, and (a) carbon atom(s) of the hexagonal ring are also involved. The losses of 13CCH3. and C2H3. from the [M? H12CN] ions of the three compounds point to the interference of distinct mechanisms of HCN elimination, leading to different structures for the [C7H6] ions.  相似文献   

13.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

14.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

15.
Cyclic polysulfides isolated from higher plants, model compounds and their electron impact induced fragment ions have been investigated by various mass spectrometric methods. These species represent three sets of sulfur compounds: C3H6Sx (x=1?6), C2H4Sx (x=1?5) and CH2Sx (x=1?4). Three general fragmentation mechanisms are discussed using metastable transitions: (1) the unimolecular loss of structural parts (CH2S, CH2 and Sx); (2) fragmentations which involve ring opening reactions, hydrogen migrations and recyclizations of the product ions ([M? CH3]+, [M? CH3S]+, [M? SH]+ and [M? CS2]); and (3) complete rearrangements preceding the fragmentations ([M? S2H]+ and [M? C2H4]). The cyclic structures of [M] and of specific fragment ions have been investigated by comparing the collisional activation spectra of model ions. On the basis of these results the cyclic ions decompose via linear intermediates and then recyclizations of the product ions occur. The stabilities of the fragment ions have been determined by electron efficiency vs electron energy curves.  相似文献   

16.
The reactions of metastable decomposing methyl acetoacetate (a mixture of keto a ad enol tautomers) are reported and discussed. The unimolecular fragmentations of the tautomers are different. The metastable decomposing radical cation of the keto form displays four specific ions: [M –CO]+˙, [M – CH2O]+˙, [M – CH2CO]+˙ and m/z 43. The results derived from D-, 13C- and 18O-labelled precursors together with thermochemical data have been used to study the mechanisms. Experimental results indicate that an unexpected isomerization occurs before dissociation. It formally corresponds to oxygen atom permutation of the two carbonyl groups without participation of the carbon atoms. This remarkable process is interpreted in terms of a mechanism involving ion-molecule complexes.  相似文献   

17.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

18.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

19.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

20.
The mass spectrometric fragmentation behaviour of pyridazine and four monosubstituted derivatives containing a pbenylalkyl side-chain (3- and 4-benizylpyridazine, 3- and 4-(2-pbenylethyl)pyridazine) was investigated. In the electron impact ionization mess spectra of the 3-substituted compounds abundant [M – H]+ peaks are observed. This allows a clear distinction between 3- and 4-substituted pyridazines, as the spectra of the latter isomers show only very weak [M – H]+ signals. The stability of [M – H]+ ions derived from 3-alkylpyridazines (deduced from only the very low abundance of further fragment ions) gives strong evidence for a cyclic structure of these ions. One fragmentation pathway typical of the parent pyridazine, the [M - N2] fragmentation, was not detectable with any of the phenylalkylpyridazines investigated. Instead, loss of HCN, H3CN+ and N2H+ was observed. An interesting fragmentation, observed with 3-(2-phenylethyl)pyridazine, is the loss of +CH3 from the molecular ion and also from the [M – H]+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号