首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical technique is developed for the simulation of free surface flows and interfaces. This technique combines the strength on the finite element method (FEM) in calculating the field variables for a deforming boundary and the versatility of the volume-of-fluid (VOF) technique in advection of the fluid interfaces. The advantage of the VOF technique is that it allows the simulation of interfaces with large deformations, including surface merging and breaking. However, its disadantage is that is solving the flow equations, it cannot resolve interfaces smaller than the cell size, since information on the subgrid scale is lost. Therefore the accuracy of the interface reconstruction and the treatment of the boundary conditions (i.e. viscous stresses and surface tension forces) become grid-size-dependent. On the other hand, the FEM with deforming interface mesh allows accurate implementation of the boundary conditions, but it cannot handle large surface deformations occurring in breaking and merging of liquid regions. Combining the two methods into a hybrid FEM-VOF method eliminates the major shortcomings of both. The outcome is a technique which can handle large surface deformations with accurate treatment of the boundary conditions. For illustration, two computational examples are presented, namely the instability and break-up of a capillary jet and the coalescence collision of two liquid drops.  相似文献   

2.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

3.
4.
An efficient semi-implicit finite element model is proposed for the simulation of three-dimensional flows in stratified seas. The body of water is divided into a number of layers and the two horizontal momentum equations for each layer of water are first integrated vertically. Nine-node Lagrangian quadratic isoparametric elements are employed for spatial discretization in the horizontal domain. The time derivatives are approximated using a second-order-accurate semi-implicit time-stepping scheme. The distinguishing feature of the proposed numerical scheme is that only nodal values on the same vertical line are coupled. Two test cases for which analytic solutions are available are employed to test the proposed scheme. The test results show that the scheme is efficient and stable. A numerical experiment is also included to compare the proposed scheme with a finite difference scheme.  相似文献   

5.
6.
In the simulation of non-linear free surface flows in a finite domain a major concern is with the radiation condition to be applied at the ‘open’ boundary. No general theoretical radiation conditions are known to exist. In this paper a new open boundary condition is formulated based on energy flux equalization between the non-linear inner domain and a linear outer domain. The non-linear flow in the inner domain is solved numerically using a semi-Lagrangian procedure. The energy flux arriving at the open boundary is removed using a new open boundary condition which acts as a linear wave absorber. For the cases studied the performance of this boundary condition is found to be quite good.  相似文献   

7.
We present an implementation of Hysing's (Int. J. Numer. Meth. Fluids 2006; 51 :659–672) semi‐implicit method for treating surface tension, for finite volume models of interfacial flows. Using this method, the surface tension timestep restriction, which is often very stringent, can be exceeded by at least a factor of 5 without destabilizing the solution. The surface tension force in this method consists of an explicit part, which is the regular continuum surface force, and an implicit part which represents the diffusion of velocities induced by surface tension on fluids interfaces. The surface tension force is applied to the velocity field by solving a system of equations iteratively. Since the equations are solved only near interfaces, the computational time spent on the iterative procedure is insignificant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Computing free surface gravity flows involves basically two coupled problems, namely, the location of the free surface position and the determination of the internal flow field (for assumed values H0 and Q of the total head and discharge, respectively). Solution techniques are invariably based on iterative procedures, but those that iterate between the two coupled problems may become unstable. In this paper we present a computational method in which the coupling is kept throughout the process of iteration. This is achieved by converting the coupled problems (by means of the Kantorovich method) into the single problem of finding a set of streamlines, including that of the free surface. These streamlines are moved (iteratively) to satisfy the stationary conditions of the governing variational principle. The algorithm is very stable and converges rapidly. It is also easy to implement to solve various types of steady flows with a free surface under gravity.  相似文献   

9.
This work is concerned with the development of a numerical method capable of simulating two-dimensional viscoelastic free surface flows governed by the non-linear constitutive equation PTT (Phan-Thien–Tanner). In particular, we are interested in flows possessing moving free surfaces. The fluid is modelled by a marker-and-cell type method and employs an accurate representation of the fluid surface. Boundary conditions are described in detail and the full free surface stress conditions are considered. The PTT equation is solved by a high order method which requires the calculation of the extra-stress tensor on the mesh contour. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. In order to validate the numerical method fully developed flow in a two-dimensional channel was simulated and the numerical solutions were compared with known analytic solutions. Convergence results were obtained throughout by using mesh refinement. To demonstrate that complex free surface flows using the PTT model can be computed, extrudate swell and a jet flowing onto a rigid plate were simulated.  相似文献   

10.
A model for oscillating free surface jet flow of a fluid from an elliptical orifice, together with experimental measurements, can be exploited to characterize the elongational viscosity of non-Newtonian inelastic fluids. The oscillating jet flow is predominantly elongational, with a small strain that oscillates rapidly between large and zero strain rates. We find that to reproduce the experimentally observed steady oscillating jet flow in model simulations, the assumed form of the non-Newtonian viscosity as a function of strain rate must have zero gradient, i.e., be Newtonian, at zero strain rate (a behavior exhibited, in general, by real inelastic fluids). We demonstrate that the Cross, Carreau, Prandtl-Eyring, and Powell-Eyring forms, although they have finite viscosity at zero strain rate, have either nonzero or even unbounded gradient at zero, and hence are unable to model oscillating jet behavior. We propose a new non-Newtonian viscous form which has all of the desirable features of existing forms (high and low strain rate plateaus, with adjustable location and steepness of the transition) and the additional feature of Newtonian behavior at low strain rates. Received: 7 February 2000 Accepted: 31 October 2000  相似文献   

11.
The single‐phase level set method for unsteady viscous free surface flows is presented. In contrast to the standard level set method for incompressible flows, the single‐phase level set method is concerned with the solution of the flow field in the water (or the denser) phase only. Some of the advantages of such an approach are that the interface remains sharp, the computation is performed within a fluid with uniform properties and that only minor computations are needed in the air. The location of the interface is determined using a signed distance function, and appropriate interpolations at the fluid/fluid interface are used to enforce the jump conditions. A reinitialization procedure has been developed for non‐orthogonal grids with large aspect ratios. A convective extension is used to obtain the velocities at previous time steps for the grid points in air, which allows a good estimation of the total derivatives. The method was applied to three unsteady tests: a plane progressive wave, sloshing in a two‐dimensional tank, and the wave diffraction problem for a surface ship, and the results compared against analytical solutions or experimental data. The method can in principle be applied to any problem in which the standard level set method works, as long as the stress on the second phase can be specified (or neglected) and no bubbles appear in the flow during the computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we establish a link between the sigma transformation approach and the arbitrary Lagrangian–Eulerian (ALE) approach. For that purpose we introduce the ALE‐sigma (ALES) approach, which consists in an ALE interpretation of the sigma transformation. Taking advantage of this new approach, we propose a general ALES transformation, allowing for a great adaptability of the vertical discretization and therefore overcoming some drawbacks of the classical sigma transformation. Numerical results are presented, showing the advantages of this general coordinate system, as, for example, a better representation of horizontal stratifications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A new numerical method has been developed for the analysis of unsteady free surface flow problems. The problem under consideration is formulated mathematically as a two-dimensional non-linear initial boundary value problem with unknown quantities of a velocity potential and a free surface profile. The basic equations are discretized spacewise with a boundary element method and timewise with a truncated forward-time Taylor series. The key feature of the present paper lies in the method used to compute the time derivatives of the unknown quantities in the Taylor series. The use of the Taylor series expansion has enabled us to employ a variable time-stepping method. The size of time increment is determined at each time step so that the remainders of the truncated Taylor series should be equal to a given small error limit. Such a variable time-stepping technique has made a great contribution to numerically stable computations. A wave-making problem in a two-dimensional rectangular water tank has been analysed. The computational accuracy has been verified by comparing the present numerical results with available experimental data. Good agreement is obtained.  相似文献   

14.
By treating it as a contact discontinuity in the density field, a free surface between two immiscible fluids can be automatically ‘captured’ by the enforcement of conservation laws. A surface‐capturing method of this kind requires no special tracking or fitting treatment for the free surface, thereby offering the advantage of algorithm simplicity over the surface‐tracking or the surface‐fitting method. A surface‐capturing method based on a new multi‐fluid incompressible Navier–Stokes formulation is developed. It is applied to a variety of free‐surface flows, including the Rayleigh–Taylor instability problem, the ship waves around a Wigley hull and a model bubble‐rising problem to demonstrate the validity and versatility of the present method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an efficient numerical method for unsteady free surface motions, with simple geometries, has been devised. Under the potential flow assumption, the governing equation of free surface flows becomes a Laplace equation, which is treated here by means of a series expansions of the velocity potential. The free surface is represented with a height function. The present method is applied to surface gravity waves to test the stability and accuracy of the method. To show the versatility of the method, a model for a dip formation is considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Free surface phenomena are described by equations that exhibit two types of non-linearities. The first is inherent to the equations themselves and the second is caused by the application of boundary conditions at a free surface at an unknown location. Numerical calculations usually do not specifically recognize the second non-linearity, nor treat it in a fashion consistent with the more obvious non-linearities in the boundary conditions. A consistent formulation is introduced in the present paper. The field equation is integrated and the free surface boundary conditions are applied on the unknown geometry by means of appropriate series expansions. The consistent formulation introduces improvements in accuracy and computing speed. The method is demonstrated on several hydrodynamic free surface problems and an error analysis is included.  相似文献   

18.
19.
A methodology for improved robustness in the simulation of high void fraction free surface polydisperse bubbly flows in curvilinear overset grids is presented. The method is fully two‐way coupled in the sense that the bubbly field affects the continuous fluid and vice versa. A hybrid projection approach is used in which staggered contravariant velocities at cell faces are computed for transport and pressure–velocity coupling while the momentum equation is solved on a collocated grid arrangement. Conservation of mass is formulated such that a strong coupling between void fraction, pressure, and velocity is achieved within a partitioned approach, solving each field separately. A pressure–velocity projection solver is iterated together with a predictor stage for the void fraction to achieve a robust coupling. The implementation is described for general curvilinear grids detailing particulars in the neighborhood to overset interfaces or a free surface. A balanced forced method to avoid the generation of spurious currents is extended for curvilinear grids. The overall methodology allows simulation of high void fraction flows and is stable even when strong packing forces accounting for bubble collisions are included. Convergence and stability in one‐dimensional (1D) and two‐dimensional (2D) configurations is evaluated. Finally, a full‐scale simulation of the bubbly flow around a flat‐bottom boat is performed demonstrating the applicability of the methodology to complex problems of engineering interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号