首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first Alkaline Alkaline-Earth Oxocuprate (II, III): NaBa2Cu22+Cu3+O6 The compound NaBa2Cu3O6 was prepared by heating of Na2O2, BaO2, Cu2O in closed Ag-tubes. X-ray single crystal investigations led to orthorhombic symmetry, space group D-Fmmm; a = 8.4229; b = 11.4418; c = 14.4063 Å; Z = 8. Cu2+ and Cu3+ show square planar polygones of four and Na+ trigonal prisms of six O2?. The two barium point positions show coordination numbers C.N. = 8 and 6 + 4. The crystal structure is discussed.  相似文献   

2.
High and Low Spin Behaviour of Ni3+?Ions in Octahedral Coordination The compounds Cs2NaNiF6, Cs2KNiF6, Rb2KNiF6, K3NiF6, and Na3NiF6 were investigated by ligand field and EPR spectroscopy between 298 and 4,2 K. These fluorides ? with the exception of the first one – crystallise in the cubic elpasolite lattice or in distorted modifications of this structure type and contain the Ni3+ ions in the low spin configuration te. This configuration is stabilised versus the high spin alternative te by an appreciable Jahn-Teller splitting of the 2Eg-state of about 7000 cm?1. The NiF6-octahedra are tetragonally elongated, the distortion being dynamical at 298 K. In case of the cubic compound Rb2KNiF6 a transition to a tetragonal structure with c/a > 1 as a consequence of a ferrodistortive Jahn-Teller ordering is observed at lower temperatures. It is calculated from the anisotropic g-parameters, that the first excited quartet level 4A2g(4T1g ? te) has an energy which is about 1000 cm?1 higher than that of the 2A1g(2Eg ? te) groundstate. Spin-orbit interactions between the energetically neighboured 2A1g(2Eg) and 4A2g, 4Eg(4T1g) states lead to third order contributions to the g-factors, which are very sensitive with respect to the doublet-quartet separation. In the hexagonal compound Cs2NaNiF6 finally, in which half of the Ni3+ ions occupy octahedral sites connected by common corners as in the other fluorides, while the other half is located in octahedral sites with common faces, high and low spin Ni3+ ions are found side by side. Obviously the latter half of these Ni3+ ions is geometrically restricted with respect to a Jahn-Teller distortion and hence the high spin configuration energetically favoured.  相似文献   

3.
Synthesis and Investigation of NiNb2O6 Single Crystals of Columbite and Rutil Type C-NiNb2O6 (columbite type) and R-NiNb2O6 (rutil type) single crystals were prepared by solid state reactions. C-NiNb2O6 a = 14.032; b = 5.687; c = 5.033 Å, space group D—Pbcn. R-NiNb2O6 a = 4.710; c = 3.038 Å, space group D—P42/mnm. The metal positions of the rutil structure are statisticaly occupied by Ni2+ and Nb5+ ions. R-NiNb2O6 is in respect to lower temperatures a metastable compound.  相似文献   

4.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

5.
The Crystal Structure of Perovskites A NiIIMVIO6. II. Sr2NiWO6 The results of an X-ray single crystal study of the perovskite Sr[NiIIWVI](6)O6, ordered in the octahedral sites, are given. While Sr[NiIITeVI](6)O6 crystallizes in a monoclinically deformed structure of the perovskite (elpasolite) type, showing a phase transition to a tetragonal lattice at 675 °K, Sr[NiIIWVI](6)O6 is tetragonal already at 298°K (space group: C; a = b = 5.559 Å; c = 7.918 Å; Z = 2). The Ni? O distances found for the tungsten compound are nearly identical with those of the tellurium perovskite. In contradiction to crystal field theory very different values of the ligand field parameter Δ (ca. 25%) are observed for these two compounds however. Obviously this effect is caused by the rather different kind of bonding within the NiO6 polyhedra in the two compounds. On the basis of the structural results the Ni? O-bonding in the two perovskites is discussed in dependence of the next nearest cationic environment.  相似文献   

6.
The stability constants of the Ni2+ and Co2+ complexes with 1,5-diazacyclooctane-N,N′-diacetic acid (H2DACODA) have been determined potentiometrically in 0.5M KNO3 at 25°. Only M(DACODA) and M(DACODA)OH? were observed. In addition the formation and dissociation kinetics of the pentacoordinate complexes M(DACODA) has been studied in aqueous solution using a stopped-flow technique. Formation follows the rate law vf = kf [M2+] [HDACODA?]/[H+], which can be interpreted as a bimolecular process either between M2+ and DACODA2? (k) or between MOH+ and HDACODA? (k). The second order rate constants k are much higher than those expected from water exchange and can only be explained by a strong internal conjugate base effect. In the limiting case, however, this is equivalent to the second possible explanation, which assumes MOH+ and HDACODA? as reactive species. The dissociation rate is given by vd = (kML + k [H+]) · [M(DACODA)].  相似文献   

7.
The Structures of the Hexagonal Elpasolite-Type Compounds Ba3NiSb2O9 and Ba3CuSb2O9 The results of an X-ray single crystal study of the hexagonal elpasolite Ba(NiSb2)(6)O9 are given. (Space group: C; a = b = 5.837 Å, c = 14.392 Å; Z = 2). The structure can be described by close-packed BaO3 layers alternating in the sequence c c h c c h … (hex. BaTiO3 type). Groups of two octahedra with common faces are connected by SbO6 octahedra via common corners. They are occupied alternately by Ni and Sb. The final reliability index was R = 3.0%. The Cu2+-compound is of the same structural type. The ligand field and EPR spectra are discussed in comparison with related Ni2+ and Cu2+ compounds.  相似文献   

8.
Crystal Structure Investigations of Compounds with the A3(M, Nb)8O21-Type (A ? Tl, Ba; M ? Fe, Ni) Tl3Fe0,5Nb7,5O21 (A), a hitherto unknown phase of the A3(M, Nb)8O21-type, and Ba3Fe2Nb6O21 (B), Ba3Ni1.33Nb6,66O21 (C) were prepared and investigated by single crystal X-ray technique. ((A): a = 9.145(1), c = 11.942(1) Å; (B): a = 9.118(2), c = 11.870(1) Å; (C) a = 9.173(3), c = 11.923(1) Å, space group D? P63/mcm, Z = 2). There is a statistic occupation of the M-positions by Nb5+ and Fe3+ or Nb5+ and Ni2+, respectively. An other compound Ba3Fe2Ta6O21 is partially ordered in respect to Ta5+ and Fe3+. Calculations of the Coulomb-part of lattice energy are discussed.  相似文献   

9.
LaCl(BO2)2 and Er2Cl2[B2O5]: Two Chloride Oxoborates of Trivalent Lanthanides Er2Cl2[B2O5] is obtained as single crystals by the reaction of ErCl3, Er2O3 and B2O3 with an excess of ErCl3 as flux in evacuated silica tubes after two weeks at 850 °C. The compound crystallizes as long, pale pink needles and appears to be air‐ and water‐resistant. Single‐crystalline LaCl(BO2)2 emerges from the reaction of La2O3, LaCl3, and B2O3 with an excess of B2O3 as flux in evacuated silica tubes after four weeks at 900 °C. LaCl(BO2)2 crystallizes as thin, colourless, air‐ and water‐resistant needles which tend to severe twinning due to their fibrous habit. The crystal structure of Er2Cl2[B2O5] (orthorhombic, Pbam; a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm; Z = 4) contains two crystallographically different erbium cations. (Er1)3+ resides in pentagonal‐bipyramidal coordination of seven anions while (Er2)3+ is surrounded by only six anions with the shape of an octahedron. The planar oxodiborate units [B2O5]4— consisting of two vertex‐shared [BO3]3— triangles are isolated according to {([BOO]2)4—}. LaCl(BO2)2 crystallizes isostructurally with PrCl(BO2)2 in the triclinic space group P1¯ (a = 423.52(4), b = 662.16(7), c = 819.33(8) pm; α = 82.081(8), β = 89.238(9), γ = 72.109(7)°; Z = 2). The characteristic unit consists of endless chains built up by corner‐linked [BO3]3— triangles. These quasi‐planar zigzag chains of the composition {[(B1)OO(B2)OO]2—} (≡ {[BO2]} run parallel [100]. The La3+ cations exhibit coordination numbers of ten and are coordinated by three Cl and seven O2— anions.  相似文献   

10.
The kinetics of the reaction between 1,4,8,11-tetraazacyclotetradecane (Cy) and Ni2+ in the presence of series of ligands L = fluoride, acetate, glycolate, oxalate, malonate, succinate, methanetriacetate, 1,3,5-cyclohexanetriacetate, tricarballylate, picolinate, glycinate, iminodiacetate, nitrilotriacetate. N,N′ -ethylenediiminodiacetate, ammonia, pyridine, ethylenediamine, 1,3-propanediamine and diethylenetriamine were studied by pH-static and spectrophotometric methods at 25° and I = 0.5. By analysis of the log k/log [L] and/or log k/pH profiles the resolved bimolecular rate constants K (Table 3) were determined using a non-linear least-square fitting procedure. Practically for all systems the rate constant K, describing the reaction between the 1:1 Ni2+ complex and the monoprotonated form of the macrocycle, was obtained. In some cases, however, also K and K were found. Since the experimental conditions were choosen so that NiL was mainly formed, the reactivity of NiL2 was generally not measurable. The effect of the number of coordinated donor groups in NiL and of the charge of NiL on K is discussed. Both effects seem to indicate that for the reaction between NiL and CyH+ first bond formation is not the rate-determining step.  相似文献   

11.
An MP4(full,SDTQ)/6-311++G(d,p)//MP2(full)/6-311++G(d,p) ab initio study was performed of the reactions of formyl and isoformyl cations with H2O and NH3, which play an important role in flame and interstellar chemistries. Two different confluent channels were located leading to CO+H3O+/NH. The first one corresponds to the approach of the neutral molecule to the carbon atom of the cations. The second one leads to the direct proton transfer from the cations to the neutrals. At 900 K the separate products CO+H3O+/NH are the most stable species along the Gibbs energy profiles for the processes. For the reaction with H2O the reaction channel leading to HC(OH) (protonated formic acid) is disfavored with respect to the two CO+H3O+ channels in agreement with the experimental evidence that H3O+ is the major ion observed in hydrocarbon flames. According to our calculations, NH+H2O are considerably more stable in Gibbs energy than NH3+H3O+;NH will predominate in the reaction zone when ammonia is added to CH4+Ar diffusion flame, as experimentally observed. At 100 K the most stable structures are the intermediate complexes CO…HOH/HNH. Particularly the CO…HOH complex has a lifetime large enough to be detected and, therefore, could play a certain role in interstellar chemistry. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1432–1443, 1999  相似文献   

12.
On the first Alkaline-Alkaline-Earth-Oxo/Peroxo-Aurate(III): NaBa4AuO4(O2)2 The hitherto unknown compound NaBa4AuO4(O2)2 was prepared by oxidizing of barium gold alloy with Na2O2 in closed Ag-bombs. X-ray single crystal investigation led to tetragonal symmetry space group DI4/mmm, a = 5.939; c = 15.393 Å, Z = 2. NaBa4AuO4(O2)2 shows a distorted square antiprismatic surrounding of Ba2+ by four peroxo groups on one side and four O2? on the opposite. Au3+ shows the usual square planar polygons of AuO4. Na+ is coordinated by four O2? ions in the base of an octahedron and two peroxo groups in the apical positions.  相似文献   

13.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

14.
Investigations on Electronically Conducting Oxide Systems. XXI [1] Stable Spinels ZnzNiMn2?zO4 and Comparison with Spinels MgzNiMn2?zO4 Stable spinels are obtained in the result of substitution of ZnII for manganese in the series Zn NiIIMnMnO4 (O ? z ≤1). Different from spinels Mg NiIIMnMnO4 (O ? z ?1)they don't be submitted to decomposition in air during slow cooling at medium temperatures. ZnNiMnO4 (z=1) could not be prepared in a mono-phase state which is indicated by the composition of ZnNiMnO3.96 deduced from analysis by oxidimetric titration. The comparably small variation of the specific electrical conductivity and of the activation energy observed in the range O ? z ? 2/3 for ZnzNiMn2?z is discussed in relation to larger alterations in the series MgzNiMn2?zO4. Structural interpretation is proposed based on the comparison of the molar volume of spinels M Mn2O4 (M: Mn, Fe, Co, Ni, Cu, Zn, Mg).  相似文献   

15.
The electron transfer reactivity of the O2+O system in low-spin coupling is studied at the second-order unrestricted Møller–Plesset (full)/6-311+G* basis set level by using different transition state structures. The properties and stabilities of the encounter complexes are compared for the five selected coupling structures: two T type, collinear, parallel, and crossing. The activation barriers and the coupling matrix elements are also calculated. The results indicate that the structures of the encounter complexes directly affect the electron transfer mechanism and rate. These encounter complexes are structurally unstable, the contact distances between the acceptor O2 and the donor O are generally large, the interaction is weak, and the structures are floppy. The electronic transmission factor for the reacting system, O2+O, is less than unity; thus, the electron transfer reaction is nonadiabatic in nature. Analysis of the dependence of relevant kinetic parameters on various influencing factors has shown that the effect of the solvent medium on the coupling matrix element is small but that on the electron transfer rate is very large. Among the five selected transition state structures, the electron transfer is more likely to take place via T1-type and P-type structures. In the low-spin coupling the favorable electronic states for two reacting species are 1∑(O2) and X2Πg(O) instead of X3∑(O2) and X2πg(O), which are favorable for the high-spin (quartet state) coupling mechanism. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 989–998, 1999  相似文献   

16.
On the Atomic Distribution in Ba2SrIn2O6 with a Contribution to the Existence of the Calciumferrite-Type of Oxoindates (I) Ba2SrIn2O6 and (II) Sr0.93Ba0.07In2O4 were prepared and investigated by single crystal X-ray technique. I crystallizes with tetragonal symmetry, space group D – I4/mmm, a = 4.168; c = 21.290 Å; Z = 2; II belongs to the orthorhombic space group D – Pnma, a = 9.858; b = 3.273; c = 11.520 Å; Z = 4. I shows in respect to the formerly investigated compound BaSr2In2O6 an unexpected statistically distribution of Ba2+ and Sr2+ with the La2SrCu2O6 type. II marks the range of existence of the calciumferrite type within the alkaline earth oxoindates in direction of large radii of M2+ ions.  相似文献   

17.
The title cation ( = Ni2L) is formed in a variety of reactions (Schemes 1 and 2) in systems containing Ni2+ and (2-thiolatoethyl)-diphenylphosphine (= L?) in the absence of coordinating anions at Ni2+/L? ratios > 0.5 in apolar or moderately polar media. Solid [Ni2L3]CIO4 and [Ni2L3]BPh4 have been isolated. Job's plots confirm the Ni2L- stoichiometry in solution. 31P-NMR data are consistent with ≥ 97% Ni2L (vs. ? 3% of hypothetical Ni3L) at equilibrium and support the suggested configuration (Fig. 2). The equilibrium between NiL2 + NiL2Br2 and Ni2L + Br? varies with the solvent composition in CH23Cl2/EtOH mixtures. The rate of formation of Ni2L2Br2 from Ni2L and bromide (in high excess) in CH2Cl2 is first-order in [Ni2L]tot but depends on the ratio [Bu4NBr]tot/[Ni2L3 · ClO4]tot, even at a high excess of bromide. This is interpreted by efficient competition in ion-aggregate formation between the small perchlorate concentration introduced as the counterion of Ni2L, and the large excess of bromide.  相似文献   

18.
A New Crystal Structure of ABLn2O5 Compounds. About BaNiNd2O5 The compound BaNiNd2O5 was prepared by solid state reaction. Single crystal examination show a new structure type (a = 3.829(2), b = 5.932(3), c = 11.649(3) Å space group D–Immm, Z = 2) with Ni2+ in octahedral coordination. The surrounding of Ba2+ and Nd3+ conforms to BaPtNd2O5 with significant differences of the polyhedra connection.  相似文献   

19.
Investigations in the System PO ? WO ? H2O? H3O+ By means of the molar ratio and Job'S method of continuous variations modified by us the composition of heteropolytungstates was determined using for the first time UV absorption spectroscopic techniques. For the case of the 1P:12W complex it is shown: In Na2HPO4 solutions acidified with HCl only the 12-tungstophosphate anion [PW12O40]3? is formed. The complex formation in dependence on the acid degree Z is complete at Z = 23 H3O+/12 WO = 1.92. For Z = 2.0 the consumption of H3O+ has been calculated to be 5 moles H3O+/1 mole HPO. Using Babko'S dilution method the stability constant of [PW12O40]3? was determined to be βk = 2.4 · 1012 l2 · mole?2.  相似文献   

20.
On an Alkaline-Earth Oxopalladate containing Pd6O12 Rings: CaBa2Pd3O6 CaBa2Pd3O6 was prepared for the first time and investigated by X-ray single crystal technique. It is isotypic to NaBa2Cu3O6 and crystallizes with orthorhombic symmetry, space group D-Fmmm, a = 8.717, b = 11.47, c = 14.933 Å; Z = 2. Typical features of the crystal structure are edge connected square planar PdO4 polygones, forming isolated Pd6O12 rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号