首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel poly(butylene terephthalate) (PBT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were synthesized by ring‐opening polymerization of cyclic poly(butylene terephthalate) initiated by functionalized POSS with various feed ratios. The impact of POSS incorporation on melting and crystallization behaviors of PBT/POSS nanocomposites was investigated by means of X‐ray diffraction and differential scanning calorimetry. It was found that the novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PBT. Thermal studies confirmed that the incorporation of POSS can enhance the thermal stability of the polymers, and the copolymer glass transition temperature increased with the increasing of POSS macromonomer content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1853–1859, 2010  相似文献   

2.
不同软段长度PBT-co-PBS-b-PEG嵌段共聚物的合成与表征   总被引:6,自引:0,他引:6  
用熔融缩聚法合成了一系列具有不同软段长度的聚对苯二甲酸丁二酯 (PBT) co 聚丁二酸丁二酯(PBS) b 聚乙二醇 (PEG)嵌段共聚物 (PTSG) ,考察了PEG分子量 (Mn(PEG) )及PBS摩尔分数 (MPBS)对材料性能的影响 实验表明 ,随Mn(PEG)增加 ,缩聚反应时间延长 ,所得产物分子量均呈较为对称的单峰分布 ,多分散性指数小于 2 0 硬段序列结构分析显示 ,随MPBS 增加 ,PBT平均序列长度减小 ,而PBS平均序列长度增加 ,二者呈无规分布 .受组成及硬段平均序列长度变化影响 ,材料内部呈微观相分离状态 ,DSC曲线上可分别观察到软、硬段熔点及玻璃化转变温度 ;硬段熔点及结晶度随MPBS升高而降低 ,主要是受其平均序列长度变化及共晶作用所致 .材料断裂延伸率及降解速率均随Mn(PEG)及MPBS增加而增加 ,可见提高软段长度及降低硬段结晶度等均能有效改善共聚物高分子链的柔韧性及亲水性 ,赋予共聚物更好的降解性能 .  相似文献   

3.
Block copolymers of two crystallizable compounds, poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), were developed with PET as the major component and the amount of PBT varying from 1.0 to 20.0 wt %. These block copolymers were prepared by end-group coupling of preformed oligomers. All polymers prepared were of equivalent molecular weight as determined by the intrinsic viscosity method. Thermal properties were determined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). With increasing PBT content, the block copolymers showed a general decrease in the values of glass transition temperature, melting temperature, initial decomposition temperature, and maximum decomposition temperature. The heat of fusion and heat of crystallization first increased and then decreased slightly. Rates of crystallization were determined by measuring density as a function of time of isothermal crystallization carried out at 95°C. It was found that small amounts of PBT increased the crystallization rate considerably over that of PET. Random copolymers did not show this phenomenon and behaved more like pure PET. The crystallization behavior of block copolymers was analyzed by the Avrami equation and Avrami exponents were determined. Results were explained on the basis that the faster-crystallizing PBT blocks crystallized first and provided built-in nucleation sites for the subsequent crystallization of PET, thus resulting in a relatively fast-crystallizing copolyester.  相似文献   

4.
The synthesis, characterization, and some properties of new copolyesters analogous to poly(butylene terephthalate) (PBT), based on L ‐arabinaric and galactaric acids, are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of methyl 2,3,4‐tri‐O‐methyl‐L ‐arabinarate or methyl 2,3,4,5‐tetra‐O‐methyl‐galactarate and dimethyl terephthalate with 1,4‐butanediol. Their weight‐average molecular weights ranged between 10,000 and 34,000, with polydispersities ranging from 1.4 to 2.2. The composition of all the copolymers was analyzed by NMR, and was found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. The melting temperature and crystallinity decreased in both series, and the glass transition temperature increased and decreased respectively, for the PBTGa and PBTAr series with increasing amounts of aldaric units in the copolyester chain. Only PBT‐derived copolyesters containing a maximum of 30% aldaric units showed discrete scattering characteristic of crystalline material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1168–1177, 2009  相似文献   

5.
The effect of flexible spacer length on the liquid crystalline property of ABA-type triblock copolymers containing azobenzene groups was investigated.For the study,the monomers,n-[4-(4-ethoxyphenylazo)phenoxy]alkyl methacrylates with varying methylene groups(n=0,2,6)were used to synthesize a series of azobenzene-containing amphiphilic triblock copolymers PAnC-PEG-PAnC by atom transfer radical polymerization(ATRP).Differential scanning calorimetry(DSC),polarizing optical microscopy(POM),and one-dimensional X-ray diffraction(1D WAXD)have shown that the glass transition temperatures of these copolymers decreased with increasing n,PAOC-PEG-PAOC has no mesophase,while both PA2C-PEG-PA2C and PA6C-PEG- PA6C have a nematic mesophase.These differences derive from the length of spacer groups between the polymer backbone and side-chain LC monomers.  相似文献   

6.
用熔融缩聚法合成了一系列聚(对苯二甲酸丁二醇酯-co-对苯二甲酸环己烷二甲醇酯)-b-聚乙二醇嵌段共聚物(PBCG),用NMR,GPC,DSC,TGA及力学性能测试等方法表征了材料的结构与性能.GPC分析显示,共聚物分子量均具有较为对称的单峰分布,多分散性指数低于1.70.13CNMR谱结果表明,随PCT摩尔分数(xPCT)从10%增至60%,PBT平均序列长度由4.02降到1.41;而PCT平均序列长度则由1.17升至2.50,二者呈无规分布.受硬段平均序列长度及结晶能力影响,硬段熔点及结晶度在xPCT为20%~30%处均达到最小值,可能是硬段间形成共晶所致.TGA分析显示,引入芳香族聚酯组分PCT确可提高材料的热稳定性.力学性能测试说明,降低结晶度有利于提高材料的断裂延伸率,相反,则有助于增强弹性模量,断裂强度及屈服强度.  相似文献   

7.
蓖麻油与乳酸的共聚物合成与表征   总被引:2,自引:1,他引:1  
用熔融聚合法合成了一种蓖麻油和乳酸的共聚物.以丁二酸酐作为共聚体系的引发剂和封端剂,制得端羧基共聚物P(LA-CO)-COOH.研究了反应条件对共聚物分子量的影响,通过核磁共振表征了共聚物的结构.DSC和TG研究表明,蓖麻油链段的引入破坏了聚乳酸的结晶性,提高了共聚物的热稳定性.  相似文献   

8.
Aliphatic ternary benzoxazine (Bz) based from triamine with long chain, as well as flexible binary Bz, was successfully synthesized, which was named as BzT and BzD respectively. The corresponding polybenzoxazines (PBz) rooting from BzT and BzD (PBzT and PBzD) respectively and their copolybenzoxazines (co-PBzs) were obtained to improve the mechanical and thermal properties via chemical cross-linking. The onset polymerization temperatures of the copolymers decreased from 189.1°C to 143.9°C, and the exothermic peak temperature reduced significantly from 232.5°C to 217°C as the content of BzT increased from 0 wt% to 100 wt% in the copolymers. The value of char yield at 800°C increased gradually from 21.5 wt% for PBzD to 28.7 wt% for PBzT. The increasing crosslink density resulted higher glass transition temperatures and improved storage moduli in glassy region because of the introduction of BzT.  相似文献   

9.
以熔融缩聚法合成了一系列基于聚乙二醇 (PEG) 聚对苯二甲酸丁二醇酯 (PBT)的聚醚酯热塑性弹性体 ,用NMR、IR、DSC及力学性能测试等方法表征了材料的结构及性能 .讨论了在相同软段长度情况下 ,不同硬段长度对材料结构与性能的影响 .实验表明 ,随着体系中硬段PBT长度的减小 ,弹性模量、抗拉强度降低 ,特性粘度、吸水量及断裂形变量增加 ,材料性能良好可调  相似文献   

10.
Segmented polyesteramides have been synthesized from N,N'-bis(p-carbomethoxybenzoy)butanediamine(T4T)as crystalline segments and mixture of poly(tetramethylene oxide)with the average molecular weight 1000(PTMO1000)and 1,5-pentanediol(PDO)as soft segments. The polymerization was carried out in the melt at 250℃ for 1-2 h while vacuum was applied. The chemical composition of the copolymer was measured by H1-NMR. The melting behavior of the copolymers was studied by the differential scanning calorimeter. The dynamic mechanical properties were investigated on injection moulded bars by means of dynamic mechanical analysis. It was found that the copolymers with more than 40% molar ratio PDO showed two glass transition temperatures and two melting temperatures. The glass transition temperatures are independent of composition,and thus two fully phaseseparated amorphous phases are present. The melting temperatures change with PDO content. The amount of PDO has an effect on both TmA and TmB . TmA is attributed to the lamella consisting of extended T4T segments,while TmB results from the much thicker lamella consisting of both extended T4T and PDO segments. It is also possible that some PDO is present in the interphase as adjacent re-entry groups. So the resultant copolymer shows that a complex system,two crystalline phases,two amorphous phases and an interphase are involved in the copolymer. The undercooling for these copolymers is small,which means that these segmented copolymers crystallize fast.  相似文献   

11.
Hydrogenated dimer acid-based Nylon 636/NyIon 66 copolymers were synthesized by in situ polymerization.The effects of Nylon 66 contents on the copolymers were characterized by intrinsic viscosity measurements,attenuated total reflection-Fourier transform infrared spectroscopy,X-ray diffraction,differential scanning calorimetry,tliermogravimetric analysis and mechanical tests.The results showed that incorporation of Nylon 66 into hydrogenated dimer acid-based Nylon had no significant effect on the glass transition or melting temperatures.However,the crystallization temperature,crystallinity degree and the maximum rate of decomposition temperature from derivative thermogravimetry measurements vary.Mechanical testing data revealed that with increasing Nylon 66 concentrations,the tensile strength of copolymers increased,while the elongation at break point and notched izod impact strength decreased.The physical and mechanical properties of HN-40,HN-50 and HN-60 are similar to those of the current PA11,PA1212,and PA1111 Nylon products.  相似文献   

12.
用热分析、动态粘弹谱、红外光谱和小角X光散射的实验结果,证实了在聚对苯二甲酸丁二酯-聚己内酰胺嵌段共聚物(简称PBT-PA_6)的无定形区中,两嵌段间具有良好的相容性,两嵌段间有氢键生成。  相似文献   

13.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

14.
Poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethyl siloxane)-poly(ethylene oxide) block copolymers, (PBT-PEO-PDMS-PEO)m, are synthesized by polycondensation (PC) of dimethylterephtalate (DMT), 1,4-butanediol (BDO) and PEO-PDMS-PEO. The soft block has been incorporated from 10 to 70 wt-%; the total molecular weight (MW) of the block-copolymers amounts to 16000 - 20000 g/mol. One major problem of polyether-PBT thermoplastic elastomers is their poor thermo-oxidative stability. Due to the excellent heat stability of PDMS, the resistance of this new thermoplastic elastomer against thermo-oxidative degradation has been increased 80 %! From differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) in the PEO-PDMS-PEO based COPEs, three phases can be distinguished. Besides the crystalline PBT phase, an amorphous mixed phase of PBT and PEO and an almost pure PDMS phase have been found. Due to the high concentration of the mixed PBT-PEO phase, the low temperature modulus and the glass transition temperature, Tg, are not dominated by the pure PDMS phase (Tg = −114°C). Depending on the amount of PBT and PEO present, the main glass transition lies in the range of −50°C to 50°C.  相似文献   

15.
The synthesis, characterization, and some properties of new copolyesters of poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) based on L ‐arabinitol and xylitol are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of 1,4‐butanediol or ethylene glycol and 2,3,4‐tri‐O‐benzyl‐L ‐arabinitol or 2,3,4‐tri‐O‐benzyl‐xylitol with dimethyl terephthalate. Their weight‐average molecular weights ranged between 7000 and 55,000, with polydispersities ranging from 1.4 to 4.7. Copolymers containing 1,4‐butanediol could be analyzed by NMR, and were found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. With increasing amounts of alditol in the copolyester, the melting temperature and crystallinity decreased in both series, and the glass transition temperature increased for the PBT series and decreased for the PET series. Only PBT‐derived copolyesters containing a maximum of 10% alditol units showed discrete scattering characteristic of crystalline material. No substantial differences in either structure or properties were observed between the L ‐arabinitol and xylitol copolyester series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5167–5179, 2008  相似文献   

16.
Inorganic–organic hybrid materials were prepared by free radical polymerization of styrene in the presence of varying amounts of the cluster Zr6O4(OH)4 (methacrylate)12. Stepwise polymerization allowed the preparation of bubble‐ and crack‐free, transparent bulk samples on a 30 g scale with dimensions required for mechanical testing. Small‐angle X‐ray scattering investigations and transmission electron micrographs revealed that the clusters formed randomly distributed aggregates of random size. Solvent uptake in swelling experiments was related to the cluster proportion. Storage moduli in the glassy state were slightly increased when compared with neat polystyrene, but pronounced plateau moduli were observed above the glass transition temperature, which correlated to the cluster proportion. Plateau moduli were used to calculate network parameters such as network density. Onset temperatures of thermal decomposition and the glass transition temperatures of the cluster‐crosslinked polymers were higher than that of neat polystyrene. Thermal expansion coefficients were unaffected in the glassy state, but were gradually reduced above the glass transition temperature with increasing cluster proportion. Both the tensile moduli at room temperature and the yield points increased when polystyrene was doped with the cluster. The strain hardening moduli, as determined in compression tests at large deformations, increased linearly with the cluster proportion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2215–2231, 2007  相似文献   

17.
Novel energetic oxetane derivatives, 3-nitratomethyl-3′-methyloxetane (NMMO) and 3-azidomethyl-3′-methyloxetane (AMMO), were used as monomers in a triflic anhydride [(CF3SO2)2O] initiating polymerization system. The “living cationic” characteristics of the polymerization were investigated and confirmed via a 19F NMR technique. This living polymerization system was, thus, utilized in the synthesis of well-defined block copolymers. Novel polymers of the A—B—A— type with various molecular weights (M?w = 14320–40660) and low polydispersity indexes (PDI = 1.11–1.29) were obtained. Two glass transition temperatures (Tg) near the respective Tgs of the homopolymers were found in the DSC thermograms of the block copolymers. The THF/AMMO copolymers were shown to possess higher thermal stability compared to THF/NMMO copolymers from thermogravimetric analysis (TGA). © 1995 John Wiley & Sons, Inc.  相似文献   

18.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), was prepared by Friedel–Crafts reaction of 4‐bromobenzoyl chloride and diphenyl, followed by condensation with potassium phenoxide. Novel poly(ether ketone ketone) (PEKK)/poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) copolymers were synthesized by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of diphenyl ether (DPE) and BPOBDP, in the presence of anhydrous aluminum chloride and N‐methyl‐pyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by various analytical techniques such as FT‐IR, DSC, TGA, and wide‐angle X‐ray diffraction (WAXD). The results showed that the resulting copolymers exhibited excellent thermal stability due to the existence of diphenyl moieties in the main chain. The glass transition temperatures are above 152°C, the melting temperatures are above 276°C, and the temperatures at a 5% weight loss are above 548°C in nitrogen. The copolymers with 50–70 mol% BPOBDP had tensile strengths of 101.5–102.7 MPa, Young's moduli of 3.23–3.41 GPa, and elongations at break of 12–17%. All these copolymers were semicrystalline and insoluble in organic solvents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Bifunctional alkoxyamine bis-TIPNO derived from 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxyl (TIPNO) and α, ω-alkyl bromide by atom transfer radical addition(ATRA) was employed as “biradical initiator” for nitroxide-mediated radical polymerization(NMRP) of isoprene and styrene. The kinetics study for the polymerization of styrene at different time showed living features. The poly(styrene-b-isoprene-b-styrene) (SIS) copolymers have two glass transition temperatures, indicating the immiscibility of the corresponding blocks.  相似文献   

20.
A new class of poly(ester-imide-ether) multiblock copolymers was synthesized by transes-terification and meltcopolymerization of dimethyl terephthalate (DMT) and N-(4-carbomethoxyphenyl)-4-(carbomethoxy)-phthalimide withethylene glycol (EG) and polytetramethylene glycol (PTMG). The structure of the above copolymers was characterized by~1H-NMR and IR spectroscopy. Some properties of the coplymers were also examined. It was found that their mechanicalproperties and heat stability, compared with poly(ether-ester) copolymers, were obviously improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号