首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique is described for dilatometry under high pressure. The technique is based on optical interferometry and is analogous to measuring the thickness of thin, nonabsorbing films and coatings. The procedure is demonstrated for the well-characterized system of n-pentane sorption by polyisobutylene, and then results for the dilation of polycarbonate by the sorption of carbon dioxide are presented. The dilation of polycarbonate by CO2 is nearly linear with concentration; the partial molar volume of CO2 decreases slightly with increasing pressure. This result indicates that all sorbed CO2 molecules contribute equally to the dilation of the polymer matrix and that none reside in microvoids or in preexisting free-volume elements which do not contribute to volume expansion of the polymer.  相似文献   

2.
Over the past years, the equilibrium sorption of gases in polymers has been intensively studied. Mostly, glassy polymers were investigated because of their excellent selective mass transport properties. This work does not focus on the equilibrium sorption but on the kinetics to reach the equilibrium. We developed a new experimental method measuring the sorption-induced dilation kinetics of a polymer film. Carbon dioxide and glassy, aromatic polyimides were chosen as model systems. Low-pressure experiments demonstrate that the measured dilation kinetics represent the sorption kinetics. A significant delay between the sorption and dilation kinetics is based on the fact that dilation kinetics occurs simultaneously with the concentration increase in the center of the polymer film. High-pressure experiments reveal significant differences in dilation kinetics compared to low-pressure experiments. Generally, three regimes can be distinguished in the dilation kinetics: a first, fast volume increase followed by two much slower regimes of volume increase. The magnitude of fast and slow dilation kinetics strongly depends on the swelling history of the polymer sample. The results of the experiments are analyzed in the light of a model relating the fast dilation kinetics to a reversible “Fickian” dilation and the slower dilation kinetics to an irreversible, relaxational dilation. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Propane and n-butane sorption in blends of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) have been determined. Solubilities of propane and n-butane increased as the PTMSP content in the blends increased. This result is consistent with the higher free volume of PTMSP-rich blends and the better thermodynamic compatibility between PTMSP and these hydrocarbons. Propane and n-butane sorption isotherms were well described by the dual-mode model for sorption in glassy polymers. PTMSP/PPP blends are strongly phase-separated, heterogeneous materials. A noninteracting domain model developed for sorption in phase-separated glassy polymer blends suggests that sorption in the Henry's law regions (i.e., the equilibrium, dense phase of the blends) is consistent with the model. However, Langmuir capacity parameters in the blends are lower than predicted from the domain model, suggesting that the amount of nonequilibrium excess free volume associated with the Langmuir sites depends on blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In situ measurement techniques suitable for determination of the coefficient of thermal expansion (CTE) in thin, spin‐cast polymer films in both the in‐plane and through‐plane directions are presented. An examination of the thermal expansion behavior of cyclotene thin films has been performed. In particular, the effect of film thickness on the in‐plane and through‐plane CTE and in‐plane Young's modulus of spin‐coated cyclotene films was examined. It is shown that the mechanical response of in situ cyclotene films can be adequately described by isotropic film properties. It was also demonstrated that there is no thickness dependence on the free‐standing mechanical properties or on the resulting through‐plane thermal strain in an in situ film. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 311–321, 1999  相似文献   

6.
We have used an optical interference technique to measure the dilation of polystyrene films in the presence of carbon dioxide or helium at pressures up to 20 atm. Dilation isotherms (plots of dilation versus gas pressure at constant temperature) were obtained for three samples of polystyrene which had widely differing molecular weights. The dilation isotherms have the same general shape as sorption isotherms, which means that all of the sorbed gas molecules contribute to volume dilation and non can be thought of as occupying molecular-sized voids in the polymer. Using sorption results from the literature we show that the partial molar volume of CO2 at 35°C is about 39 cm3 mol?1 and appears to be independent of polystyrene molecular weight. For a polystyrene sample with Mn = 3600, the partial molar volume of sorbed CO2 increases to 44 and 50 cm3 mol?1 at 45 and 55°C, respectively. The sorption of CO2 in polystyrene is shown to depress the glass transition temperature of the mixture, consistent with theoretical predictions. The shape of the dilation and sorption isotherms are consistent with the depression of the glass transition temperature.  相似文献   

7.
Poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free-volume glassy di-substituted polyacetylene, has the highest gas permeabilities of all known polymers. The high gas permeabilities in PTMSP result from its very high excess free volume and connectivity of free volume elements. Permeability coefficients of permanent gases in PTMSP decrease dramatically over time due to loss of excess free volume. The effects of aging on gas permeability and selectivity of PTMSP membranes continuously exposed to a 2 mol % n-butane/98 mol % hydrogen mixture over a period of 47 days are reported. The permeation properties of PTMSP membranes are quite stable when the polymer is continuously exposed to a gas mixture containing a highly sorbing organic vapor such af n-butane. The n-butane/hydrogen selectivity was essentially constant for the 47-day test period at a value of 29, or 88% of the initial value of the as-cast film of 33. Condensable gases such as n-butane may serve as a “filler” in the nonequilibrium free volume of the polymer, thereby preserving the high level of excess free volume. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1483–1490, 1997  相似文献   

8.
Relative rate constants for the reaction of OH radicals with a series of n-alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1s?1, the rate constants obtained are (X1012 cm3 molecule?1 s?1): propane 1.22 ± 0.05, n-pentane 4.13 ± 0.08, n-heptane 7.30 ± 0.17, n-octane 9.01 ± 0.19, n-nonane 10.7 ± 0.4, and n-decane 11.4 ± 0.6. The data for propane, n-pentane, and n-octane are in good agreement with literature values, while those for n-heptane, n-nonane, and n-decane are reported for the first time. These data show that the rate constant per secondary C—H bond is ∽40% higher for —CH2— groups bonded to two other —CH2— groups than for those bonded to a —CH2— group and a —CH3 group.  相似文献   

9.
Sorption and dilation isotherms for argon in poly(ethyl methacrylate) (PEMA) are reported for pressures up to 50 atm over the temperature range 5–85°C. At temperatures below the glass transition (Tg=61°C), sorption isotherms are well described by the dual-mode sorption model; and isotherms above Tg follow Henry's law. However, isotherms for dilation due to sorption are linear in pressure at all temperatures over the range investigated. Partial molar volumes of Ar in PEMA are obtained from these isotherms. The volumes are approximately constant above Tg (about 40 cm3/mol), whereas the volumes below Tg are smaller and dependent on both temperature and concentration (19–26 cm3/mol). By analyzing the experimental data according to the dual-mode sorption and dilation model, the volume occupied by a dissolved Ar molecule and the mean size of microvoid in the glass are estimated to be 67 129 Å3, respectively. The cohesive energy density of the polymer is also estimated as 61 cal/cm3 from the temperature dependence of the dual-mode parameters.  相似文献   

10.
Solubility coefficients, S, and diffusion coefficients, D, have been determined for ethane and n-butane in poly(n-butyl methacrylate) (PnBMA) by the microbalance technique in the temperature range from ?14 to 50°C, which encompasses the glass transition of the polymer (22–35°C). S and D for ethane were found to be independent of penetrant pressure and concentration at all temperatures studied No transition to “dual-mode” sorption behavior, as reported for a number of penetrants in glassy polymers, was observed with ethane, even at the lowest experimental temperature. Plots of log S and log D versus 1-T, the reciprocal absolute temperature, were linear for the ethane-PnBMA system and did not exhibit discontinuities in the glass transition region. The above results suggest that the same mechanism of solution and transport of ethane in PnBMA is operative both above and below the glass transition of the polymer under the experimental conditions. This behavior is attributed to the low “excess” free volume of glassy PnBMA, as indicated by the small difference between the coefficients of thermal expansion of this polymer in its rubbery and glassy states. Possible conditions for the appearance of dual-mode gas sorption are discussed. A similar study with the n-butane-PnBMA system showed that the polymer was plasticized by the penetrant below 20°C, due to the higher solubility of n-butane compared with that of ethane in PnBMA.  相似文献   

11.
The solubility, diffusivity, and permeability of ethylbenzene in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) at 35, 45 and 55 °C were determined using kinetic gravimetric sorption and pure gas permeation methods. Ethylbenzene solubility in PTMSP was well described by the generalized dual‐mode model with χ = 0.39 ± 0.02, b = 15 ± 1, and CH = 45 ± 4 cm3 (STP)/cm3 PTMSP at 35 °C. Ethylbenzene solubility increased with decreasing temperature; the enthalpy of sorption at infinite dilution was −40 ± 7 kJ/mol and was essentially equal to the enthalpy change upon condensation of pure ethylbenzene. The diffusion coefficient of ethylbenzene in PTMSP decreased with increasing concentration and decreasing temperature. Activation energies of diffusion were very low at infinite dilution and increased with increasing concentration to a maximum value of 50 ± 10 kJ/mol at the highest concentration explored. PTMSP permeability to ethylbenzene decreased with increasing concentration. The permeability estimated from solubility and diffusivity data obtained by kinetic gravimetric sorption was in good agreement with permeability determined from direct permeation experiments. Permeability after exposure to a high ethylbenzene partial pressure was significantly higher than that observed before the sample was exposed to a higher partial pressure of ethylbenzene. Nitrogen permeability coefficients were also determined from pure gas experiments. Nitrogen and ethylbenzene permeability coefficients increased with decreasing temperature, and infinite dilution activation energies of permeation for N2 and ethylbenzene were −5.5 ± 0.5 kJ/mol and −74 ± 11 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1078–1089, 2000  相似文献   

12.
The effect of a penetrant-induced isothermal glass transition on sorption, dilation, and diffusion behavior was studied in a single experimental run for CO2 in cast polybenzylmethacrylate films. The dual-mode type sorption isotherms below the glass transition temperature of the polymer changed to linear ones above a certain concentration. Meanwhile, partial molar volume of CO2 determined from the dilation of the films above the concentration gave a value very close to the one reported for rubbery polymers, and diffusion coefficients became less concentration-dependent. The results were conformable to the concept of unrelaxed volume in glassy polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A series of fluorescent polymers with tunable di-color emission, P(NVS)n-NAPHs, were prepared via well-controlled atom transfer radical polymerization (ATRP). Each of the obtained polymers with different molecular weights has a composite emission spectrum comprising a blue component originated from the monomer, 1-(4-vinylstyryl)naphthalene (NVS), and a green component originated from the initiator, 2-(2,3-dihydro-2-(4-methoxyphenyl)-1,3-dioxo-1H-phenalen-7-ylamino)-ethyl-2-chloroacetate (NAPH). The intensity of the blue and green emission bands can be easily tuned by changing the polymer chain length. The blue emission part is enhanced with increasing the molecular weight of the fluorescent polymer in both DMF solution and film state.  相似文献   

14.
The diffusion coefficient of ethanol and of n-pentane in PTMSP, at 27°C, was measured as a function of concentration up to a penetrant content of about 12% by weight, for polymer samples obtained through different processes; differential sorptions and desorptions with vapor phases were considered. In the case of ethanol a nonmonotonous behavior was observed for the diffusivity, while in the case of n-pentane the same property was found to monotonously decrease with increasing the penetrant content. The sorption isotherms were also reported, indicating that n-pentane exhibits a typical dual mode behavior, while ethanol follows an unusual s-shape curve. The chemical potential of the dissolved penetrants, calculated directly from the isotherms, shows the very different importance of the energetic interactions of the two penetrants with the polymer units. In spite of the remarkably different concentration dependencies observed for both solubility and diffusivity of the two penetrants, the mobility factors are in both cases monotonously decreasing with the penetrant concentration, and follow very similar trends. The significant differences observed for the concentration dependence of the diffusion coefficients are, thus, associated to the thermodynamic contributions, which are very different for n-pentane and ethanol. Different polymeric films, obtained through different solvent evaporation processes, show quite different solubility, diffusivity and mobility for both ethanol and n-pentane. On the other hand, the ratio between the mobility of the two penetrants as well as the slope of mobility as function of the concentration remains the same for all the different samples inspected. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2245–2258, 1997  相似文献   

15.
The effect of confinement on the crystallinity and chain orientation of ultrathin poly(di-n-hexylsilane) films has been investigated using UV absorption, fluorescence and IR spectroscopies. UV absorption measurements in a series of poly(di-n-hexylsilane) films having thicknesses between 50 and 3500 Å have shown that, for thicknesses less than 500 Å, the polymer backbone disorders and extensive crystallization of the films is hindered irrespective of molecular weight or surface hydrophobicity. Fluorescence studies showed that rapid energy transfer occurs from the disordered chain segments to the crystalline ones. The orientation of both the polymer backbone and side chains was probed with IR absorption and grazing incidence reflection measurements. The side chains are extended, although not completely in the all-trans conformation, with their carbon plane mostly perpendicular to the substrate. The backbone lies extended, with the polymer axis parallel to the plane of the film. The hexyl side-chains disorder in films less than 2000 Å thick and this disordering occurs through the introduction of gauche bonds. Our findings suggest the possibility of using thickness to control the chain organization and morphology of a polymer thin film. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Isotactic polypropylene nanocomposites were obtained by the melt blending of polypropylene‐graft‐maleic anhydride and organophilic layered silicate (OLS) consisting of synthetic fluorohectorite modified by cation exchange with protonated octadecylamine. The composition of the inorganic clay was varied between 2.5 and 10 wt %, and films of the composites were obtained via hot‐press molding. X‐ray analysis showed that nanocomposites in which silicate layers were either delaminated or ordered as in an intercalated structure were obtained. The elastic modulus of the samples was higher than that of the pure polymer over a wide temperature range and increased with increasing inorganic content. The transport properties, sorption and diffusion, were measured for two organic vapors, dichloromethane and n‐pentane. For both vapors, the sorption was not very different from that of the pure polymer, whereas the zero‐concentration diffusion parameter strongly decreased with increasing OLS content. Therefore, the permeability, that is, the product of sorption and diffusion, decreased for both vapors as a result of the decreased value of the diffusion parameter. The decrease was higher for the less interacting n‐pentane. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1798–1805, 2003  相似文献   

17.
Two new complexes, {[Cd(btec)0.5(imb)(CH3OH)]·CH3OH}n (1) and {[Cd(btec)0.5(H2btec)]·(H2imb)·2H2O}n (2) (H4btec = 1,2,4,5-benzenetetracarboxylic acid, imb = 2-(1H-imidazol-1-methyl)-1H-benzimidazole), have been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Both complexes exhibit 2-D network structures. In 1, each 1,2,4,5-benzenetetracarboxylate links four Cd2+ cations, and each Cd2+ cation connects two 1,2,4,5-benzenetetracarboxylates, to form a 2-D layer, with the imb ligands located on each side of the 2-D layer. In 2, there are two kinds of 1,2,4,5-benzenetetracarboxylates in the structure. One kind is completely deprotonated and acts as hexadentate linkers, leading to a 2-D layer. The other kind is only doubly deprotonated and decorates each side of the 2-D layer. In 2, imb is protonated, forming (H2imb)2+ cations that only cocrystallize with the negatively charged Cd coordination polymer ({[Cd(btec)0.5(H2btec)]2?}n), but does not coordinate to the Cd2+ cations. IR spectra, PXRD patterns, thermogravimetric analyses, and fluorescent properties of 1 and 2 have also been determined.  相似文献   

18.
The dilation of low-density polyethylene accompanied by the sorption of CO2 was measured by microscopy under pressures up to 50 atm at temperatures from 25 to 55°C. The dilatometry measurement, which is also applied to the determination of the thermal expansion coefficient, is directly performed by a cathetometer. The dilation of LDPE by sorbed CO2 is linear with concentration. The buoyancy correction is described for the CO2 sorption isotherms in LDPE. The partial molar volume of CO2 in LDPE, calculated from the dilation and the sorption isotherms, is almost independent of temperature.  相似文献   

19.
The quartz crystal microbalance/heat conduction calorimeter (QCM/HCC) is a versatile instrument coupling both gravimetric and calorimetric techniques. The QCM/HCC is used to probe vapor sorption in thin films. Three parameters are measured simultaneously as a thin film undergoes vapor sorption, namely: mass changes in the film (±10 ng), corresponding thermal effects upon vapor sorption (±100 nW), and motional resistance (±0.5Ω) changes within the film. A range of film thicknesses (0.75 to 8.5 μm) of the polymer, Tecoflex? are cast on QCMs and the interaction of each film with ethanol and water is determined. From the direct calorimetric measurements, sorption enthalpies (ΔsorptionH kJ/mol) are determined for the film–vapor interactions. Sorption isotherms are then analyzed for each film. The isotherms shown here generally display a linear Henry's Law dissolution relationship between the vapor pressure and the amount of vapor sorbed into the film. Motional resistance data provides a window to view viscoelastic effects of the polymer films upon vapor sorption. Motional resistance data are compared for ethanol sorption in a relatively thin (0.75 μm) and thicker (8.5 μm) Tecoflex? film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3893–3906, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号