首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was found that montmorillonite was intercalated with ?-caprolactam. X-ray diffraction revealed that the chain axes of the ?-caprolactam were parallel to the montmorillonite plates. The intercalated montmorillonite was swollen by molten ?-caprolactam at 200°C. ?-Caprolactam and 6-aminocaproic acid (accelerator) were polymerized with the intercalated montmorillonite at 260°C for 6 h, yielding a nylon 6-clay hybrid. X-ray diffraction and transmission electron micrography revealed that the silicate layers of the hybrid were uniformly dispersed in the nylon 6 matrix. Mechanical properties of the hybrid were improved. The strength and the modulus of the hybrid increased compared with the previously reported nylon 6 clay-hybrid (NCH) synthesized by montmorillonite intercalated with 12-aminolauric acid. The heat distortion temperature (HDT) of the hybrid was 164°C, which was 12°C higher than that of NCH. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
3.
The structure of nylon‐6 hybrids with synthetic or natural clays was investigated for melt‐pressed films with Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry in comparison with the nylon‐6 homopolymer. In contrast to the development of familiar α‐form crystals in plain nylon‐6 film, the hybrid films produced γ‐form crystals when nylon‐6 was conjugated with synthetic mica, whereas the hybridization with natural montmorillonite gave rise to both α‐ and γ‐crystalline modifications. The degree of crystallinity of the nylon‐6 hybrid with synthetic mica was the highest of the three series. Moisture sorption isotherms obtained for these nylon‐6‐based films were all typically sigmoid‐shaped, although the prevalence of a higher crystallinity in the hybrid samples lowered the degree of moisture regain. The sorption behavior was analyzed well in terms of the parameters of a Brunauer–Emmett–Teller multiplayer adsorption model and a Flory–Huggins treatment. It was also observed that the cluster formation of the water adsorbed into the nylon‐6 matrix tended to be restricted by the hybridization with clay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 479–487, 2002; DOI 10.1002/polb.10106  相似文献   

4.
Nylon 6-clay hybrid (NCH) is a molecular composite of Nylon 6 and uniformly dispersed silicate monolayers of montmorillonite. In this study the preferred orientation of montmorillonite and Nylon-6 crystallites in a thick (3 mm) injection-molded bar of NCH has been investigated using x-ray diffraction and electron micrography (TEM). It is clear that this bar has a triple layer structure consisting of surface, intermediate, and middle layers which have different preferred orientation. In the surface layer both the silicate monolayers and the chain axes of Nylon-6 crystallites are parallel to the bar surface though the latter are randomly oriented within the plane. In the intermediate layer the silicate monolayers remain parallel to the bar surface but the Nylon-6 crystallites rotate by 90° so that the chain axes would be perpendicular to the bar surface or the silicate monolayers. In the middle layer the silicate monolayers are randomly oriented around the flow axis of the NCH bar while remaining parallel to it, and the Nylon crystallites are randomly oriented around the flow axis while keeping their chain axes perpendicular to the silicate monolayers. It may be concluded that such preferred orientation of Nylon 6 crystallites is induced by the clay because the crystallites in the pure Nylon 6 bar have no preferred orientation. ©1995 John Wiley & Sons, Inc.  相似文献   

5.
A micro‐FTIR measurement has been conducted to explore the molecular orientation of amorphous phase in the nylon 6/clay nanocomposite at large strain. Our results indicate that the molecular orientation in such a nanocomposite during stretching is lower than that observed for the pure nylon 6 counterpart, which is further evidenced by the true stress‐strain dependence. The relaxation of the molecular network, resulted from the destruction of γ‐crystals in part and mostly from microvoding (demonstrated by volume dilatation and 2D‐SAXS measurements), should be responsible for the suppressed molecular orientation in the nylon 6/clay nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 514–519, 2010  相似文献   

6.
王灿耀  郑玉婴 《应用化学》2006,23(12):1373-0
对Kevlar纤维进行了改性,使其成为己内酰胺阴离子开环聚合的活性中心,采用阴离子接枝法在Kevlar纤维(KF)表面接枝尼龙6低聚物,并与基体尼龙6混合,用挤出和注塑方式制备了尼龙6/改性Kevlar纤维(PA6/KF1)复合材料。ESEM和XPS分析表明,Kevlar纤维表面接枝上了尼龙6低聚物。比较了尼龙6/未改性Kevlar纤维(PA6/KF0)和PA6/KF1复合材料的力学性能及破坏形态,同时探讨了其破坏机理。结果表明,接枝尼龙6的KF1增强了KF与尼龙6复合材料界面的相互作用,拉伸强度、弯曲强度和弯曲模量分别提高了20.69%、12.26%和14.23%,但冲击强度降低了8.2%;当复合材料被破坏时,未改性纤维表面只粘附有少量的树脂尼龙6,而改性纤维的表面有较多的树脂包覆层,呈部分非界面脱粘破坏,具有良好的界面结合能力。  相似文献   

7.
A polyimide hybrid with montmorillonite clay mineral has been synthesized from a dimethylacetamide (DMAC) solution of poly(amic acid) and a DMAC dispersion of montmorillonite intercalated with an ammonium salt of dodecylamine. Montmorillonite consists of stacked silicate sheets about 2000 Å in length, 10 Å in thickness. In this hybrid, montmorillonite is dispersed homogeneously into the polyimide matrix and oriented parallel to the film surface. Thanks to this special structure, this hybrid showed excellent gas barrier properties. Only 2 wt % addition of montmorillonite brought permeability coefficients of various gases to values less than half of those of ordinary polyimide. Furthermore, this hybrid had low thermal expansion coefficient. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The first successful example of a polymer‐clay hybrid was nylon‐clay hybrid (NCH), which is a nano‐meter‐sized composite of nylon‐6 and 1‐nm‐thick exfoliated aluminosilicate layers of the clay mineral. NCH was found and developed at Toyota Central Research and Development Laboratories over 17 years ago. The NCH containing a few weight percentages of clay exhibits superior properties such as high modulus, high strength, and good gas‐barrier properties. The key for the discovery of NCH was the polymerization of a nylon monomer in the interlayer space of the clay. This highlight presents the development of NCH from its discovery to its commercialization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 819–824, 2004  相似文献   

9.
Isobutylene isoprene rubber (IIR)‐clay nanocomposites have been prepared successfully by melt intercalation with maleic anhydride‐grafted IIR (Ma‐g‐IIR) and organophilic clay. In IIR‐clay nanocomposites, the silicate layers of the clay were exfoliated and dispersed into the monolayer. The nanocomposites exhibited greater gas barrier properties compared with those of Ma‐g‐IIR. When 15 phr clay was added, gas barrier properties were 2.5 times greater than those of Ma‐g‐IIR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1182–1188, 2006  相似文献   

10.
A hot‐air (HA) drawing method was applied to nylon 6 fibers to improve their mechanical properties and to study the effect of the strain rate in the HA drawing on their mechanical properties and microstructure. The HA drawing was carried out by the HA, controlled at a constant temperature, being blown against an original nylon 6 fiber connected to a weight. As the HA blew against the fiber at a flow rate of 90 liter/min, the fiber elongated instantaneously at strain rates ranging from 9.1 to 17.4 s−1. The strain rate in the HA drawing increased with increasing drawing temperature and applied tension. When the HA drawing was carried out at a drawing temperature of 240 °C under an applied tension of 34.6 MPa, the strain rate was at its highest value, 17.4 s−1. The draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest strain rate had a birefringence of 0.063, a degree of crystallinity of 47%, and a dynamic storage modulus of 20 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1137–1145, 2000  相似文献   

11.
Copolymers of nylon 266 and nylon 66 were prepared by interfacial polymerization of N-glycyl hexanediamine and hexanediamine with adipoyl chloride. According to the results of intrinsic viscosity measurements and GPC analysis, the molecular weights of the copolymers were relatively high. The structure of the copolymers was confirmed by FTIR, and the compositions were determined by 1H-NMR spectroscopy. The copolymers have similar solubility features as nylon 66. Both melting and glass transition temperatures showed a minimum at around 20–30% nylon 66 content. The copolymers are semicrystalline. Copolymers with lower Tm could be melt-spun into fibers without appreciable thermal degradation. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Two-dimensional cross polarization (CP), magic angle spinning (MAS) rotor synchronization NMR spectroscopy has been used to determine quantitatively the molecular orientational distribution function on hot-drawn Nylon 6. Both films and fibers are studied that had been thermally deformed at temperature above Tg, from 60 to 175°C at draw ratios in the range of 1-5.5. In the two-dimensional NMR spectrum, the sidebands that intrinsically originate from the chemical shift anisotropy reveal the degree of molecular orientational order. No preferential orientational order is detected for the sample without thermal deformation, and the highest degree of order is observed for samples which have been hot drawn above Tg at ratios ca. 5. Based on the aggregate model the maximum achievable order parameters are determined. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

14.
An asymmetric total synthesis of (+)‐6‐epicastanospermine was achieved in 13 steps and 19% overall yield from β‐hydroxy‐α‐furfurylamine derivative, which was prepared by Sharpless asymmetric aminohydroxylation of furyl acrylate.  相似文献   

15.
The melting process of constrained nylon 6 fibers has been studied to estimate the true melting point of its original crystals. The melting peak became simpler in shape and shifted to higher temperature with increasing fiber-axis restricting force. When heating rate, β, was increased, the temperature where the melting curve initially departs from its baseline, Tsm, decreased steeply in the range of 45 to 60°C min-1, and increased linearly with increasing β above 60°C min-1. By linear extrapolation of Tsm to 0°C min-1, the temperature of ca 190°C was obtained for the melting temperature of the original nylon 6 crystals. This seems to correspond to the zero-entropy-production melting of the most imperfect crystallites of the nylon 6 fabric. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The polymorphic transition (γ → α conversion) in a single nylon 6 filament under stretching has been explored for the first time by using micro‐FT‐IR spectroscopy. The content of γ‐form deceases with straining while the amount of α‐form gradually increases, suggesting γ → α conversion. A two‐step mechanism, that is, melting and recrystallization, seems pertinent for the γ → α conversion considering that the γ‐form shows somewhat reversible and the α‐form keeps nearly intact upon unloading. Moreover, stress‐induced γ → α conversion at large strain can be well correlated with the molecular orientation in the amorphous phase and thus a serial arrangement between the γ crystals and amorphous phase along the stretching direction is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 898–902, 2009  相似文献   

17.
Wholly aromatic rigid‐rod polyamides such as poly(p‐phenyleneterephthalamide) (PPD‐T) were synthesized in situ in a solution of nylon‐6 via the phosphorylation polycondensation method to form nanocomposites or so‐called “molecular composites.” The incorporation of PPD‐T into a nylon‐6 matrix was achieved by this approach in a more compatibilized form than that obtained by the conventional coagulation method that entails precipitation of a blend of PPD‐T and nylon‐6 in a solvent, for example, concentrated sulfuric acid. Gelation occurred during the synthesis, presumably because of the formation of interpenetrating networks accompanied by some block‐copolymer formation. The transparency and tensile properties of the resultant composite films from the rigid‐rod aromatic polyamide/nylon‐6 combination were improved over those of nylon‐6 film alone. Rainbow‐colored intense birefringence was observed for the composite films under crossed polarizers. These properties are discussed in context with the in situ synthesized rigid‐rod polyamides uniformly incorporated in nylon‐6. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1014–1026, 2003  相似文献   

18.
The effects of nylon 6 matrix viscosity and a multifunctional epoxy interfacial modifier on the notched impact strength of the blends of nylon 6 with a maleic anhydride modified polyethylene‐octene elastomer/semi‐crystalline polyolefin blend (TPEg) were studied by means of morphological observation, and mechanical and rheological tests. Because the viscosity of the TPEg is much higher than that of nylon 6, an increase in the viscosity of nylon 6 reduces the viscosity mismatch between the dispersed phase and the matrix, and increases notched impact strength of the blends. Moreover, addition of 0.3 to 0.9 phr of the interfacial modifier leads to a finer dispersion of the TPEg and greatly improves the notched impact strength of the nylon 6/TPEg blends. This is because the multi‐epoxy interfacial modifier can react with nylon 6 and the maleated TPEg. The reaction with nylon 6 increases the viscosity of the matrix while the coupling reaction at the interface between nylon 6 and the maleated TPEg leads to better compatibilization. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2664–2672, 1999  相似文献   

19.
《先进技术聚合物》2018,29(2):906-913
Nylon 66 microcomposites with various weight percentage of titanium dioxide (TiO2) were prepared by a twin screw extruder and investigated for mechanical and tribological properties. Mechanical properties of the composite such as tensile strength/modulus, flexural strength/modulus, impact, and compressive strength first showed an increase up to 6 wt% TiO2 followed by a decrease at higher filler loading. The value of heat deflection temperature increased with the increase in wt% of TiO2. Sliding wear tests were performed on pin‐on‐disk equipment under different loads, sliding velocity, and sliding distance combinations. It was found that micro‐TiO2‐Nylon 66 composite exhibited reduced wear and coefficient of friction up to 6 wt% TiO2. Micro‐TiO2 at 2 wt% was most effective in improving the tribological properties of plain nylon 66. The worn surfaces were examined by scanning electron microscopy to understand the wear mechanism. The optimal combination from 2 wt% to 6 wt% micro‐TiO2‐Nylon 66 can be used depending upon the application requiring improvement in tribological or mechanical properties, respectively.  相似文献   

20.
Super-tough nylon 6 was prepared by using maleic anhydride grafted polyethylene-octene rubber/semicrystalline polyolefin blend (TPEg) as an impact modifier. The morphology, dynamic mechanical behavior, mechanical properties, and toughening mechanism were studied. Results indicate that TPEg with a semicrystalline polyolefin core and a polyethylene-octane rubber shell, possesses not only a better processability of extruding and pelletizing with a lower cost, but also an improved toughening effect in comparison with the maleated pure polyethylene-octene rubber. The shear yielding is the main mechanism of the impact energy dissipation. In addition, the influence of melt viscosity of nylon 6 on toughening effectiveness was also investigated. High melt viscosity of matrix is advantageous to the improvement of notched Izod impact strength. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1987–1994, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号