首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Synthesis and Crystal Structure of Ba6Lu4Zn10O22 with [OBa6] Octahedra Single crystals of Ba6Lu4Zn10O22 have been prepared by high temperature reactions and investigated by X-ray techniques. This compound is isotypic to Ba3In2Zn5O11 and the first member of the Rare Earth elements. Ba6Lu4Zn10O22 crystallizes with cubic symmetry, space group T-F4 3m, a = 13.452(1) Å and Z = 4. Zn2+ shows a tetrahedral, Lu3+ an octahedral and Ba2+ a three-fold capped trigonal prismatic coordination by O2?. The ZnO4 tetrahedra and LuO6 octahedra are forming macro polyhedra of the type Zn10O20 and Lu4O16. A discussion is given for the Ba6O33 and Ba6O42 groups.  相似文献   

2.
Photoluminescence of Trivalent Rare Earths in Perovskite Stacking Polytypes Ba2La2?x RE MgW2□O12, Ba6Y2?x RE W3□O18, and Sr8SrGd2?xRE W4□O24 Rhombohedral 12 L stacking polytypes Ba2La2?xREMgW2□O12 show with RE3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba6Y2?xREW3□O18 and the polymorphic perovskites Sr8SrGd2?xREW4□O24 with RE3+ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.  相似文献   

3.
K2Zn3O4 and Rb2Zn3O4, Oxozincates with Framework Structure For the first time single crystals of K2Zn3O4 were obtained by heating mixtures of the binary oxides (K: Zn = 2.2:3) in sealed Ag- or Pt-capsules at 800°C (5 w). Powder of this colourless and moisture-sensitive oxide was prepared analogously at 500°C. It crystallizes monoclinic, space group C2/c with a = 1482.7(2), b = 637.3(1), c = 571,9(1) pm, β = 102.79(1)°, Z = 4, dx = 4.265 g/cm3, dpyk = 4.00 g/cm3. The crystal structure was determined from four-circle diffractometer data (MoKα, 730 unique hkl) and refined to R = 5.9%, Rw = 6.4%. It shows a Zn3O4 framework which consists of SiS2-like chains [ZnO4/2] connected by puckered layers of [ZnO3/3]. The crystal structure can be derived from a cubic closet packing of O2? and K+. Effective Coordination Numbers and the Madelung Part of Lattice Energy (MAPLE) are calculated. Rb2Zn3O4 was prepared from the binary oxides at 400°C (colourless hygroscopic powder). According to powder data it crystallizes isostructural to K2Zn3O4 with a = 1523.5(4), b = 649.8(2), c = 574.0(2) pm, β = 101.43(3)°, Z = 4, dx = 5.141 g/cm3, dpyk = 5.20 g/cm3.  相似文献   

4.
Two New Alkaline-Earth-Oxoindates: BaCa2In6O12 and BaSr2In6O12 The hitherto unknown compounds (I): BaCa2In6O12 and (II): BaSr2In6O12 were prepared and examined by single crystal X-Ray work. (I) and (II) crystallize with hexagonal symmetry, space group C? P63/m, with (I): a = 9.880, c = 3.211 Å; (II): a = 9.9443; c = 3.2671 Å, Z = 1. Both compounds are isotypic to the metastable oxide AM2Ln6O12, but without metastable behavior. The [In6O12]6? network is occupied by the alkaline earth ions. One of the tunnels is stuffed by Ca2+ and Sr2+ respectively, the other one by Ba2+ in a statistical distribution on possible point positions. (I) and (II) prove the existence of the AM2Ln6O12-type in respect to small Ln3+ ions.  相似文献   

5.
New Compounds with Zinc in Square Pyramidal Coordination: BaZnDy2O5 and Ba1.25ZnHo2O5.25 (Ba5Zn4Ho8O21). Single crystals of (I): BaZnDy2O5 and (II): Ba5Zn4Ho8O21 were prepared by high temperature reactions and investigated by X-ray technique. (I) belongs to the BaCuLn2O5 type, space group D-Pbnm; a = 7.084; b = 12.368; c = 5.728 Å, Z = 4. (II) is isotypic to Ba5Mn4Ln8O21, space group C-I4/m; a = 13.779; c = 5.707 Å, Z = 2. The two different structure types are caused by the small difference in the composition of 0.25 BaO. Analogies and differences will be discussed. In addition the lattice constants of powder samples of Ba5Zn4Ln8O21 (Ln = Eu, Gd, Dy, Ho, Er and Y) are given.  相似文献   

6.
Experiments about the Mixed Crystal Formation between Zincoxotantalates and -antimonates: ZnTa2?xSbxO6 and Zn4Ta2?xSbxO9 In the area of substituted oxotantalates of zinc two new phases of the composition A: ZnTa1·8Sb0·2O6 and B: Zn4Ta1·2Sb0·8O9 were prepared and investigated by X-ray single crystal technique. A crystallizes with tetragonal symmetry (space group D–P42/mnm, a = 4.7314; c = 9.2160 Å; Z = 2). B is monoclinic (space group C–C2/c; a = 15.103; b = 8.839; c = 10.378 Å; β = 93.81°; Z = 8). A crystallizes with trirutile structure, although there is a small replacement of Ta5+ by Sb5+. B maintains the Zn4Ta2O9 structure. One of the point positions of the M5+ ions is occupied statistically by Ta5+/Sb5+ and Zn2+. B is a metastable compound.  相似文献   

7.
Investigations on Electronically Conducting Oxide Systems. XXI [1] Stable Spinels ZnzNiMn2?zO4 and Comparison with Spinels MgzNiMn2?zO4 Stable spinels are obtained in the result of substitution of ZnII for manganese in the series Zn NiIIMnMnO4 (O ? z ≤1). Different from spinels Mg NiIIMnMnO4 (O ? z ?1)they don't be submitted to decomposition in air during slow cooling at medium temperatures. ZnNiMnO4 (z=1) could not be prepared in a mono-phase state which is indicated by the composition of ZnNiMnO3.96 deduced from analysis by oxidimetric titration. The comparably small variation of the specific electrical conductivity and of the activation energy observed in the range O ? z ? 2/3 for ZnzNiMn2?z is discussed in relation to larger alterations in the series MgzNiMn2?zO4. Structural interpretation is proposed based on the comparison of the molar volume of spinels M Mn2O4 (M: Mn, Fe, Co, Ni, Cu, Zn, Mg).  相似文献   

8.
On the Atomic Distribution in Ba2SrIn2O6 with a Contribution to the Existence of the Calciumferrite-Type of Oxoindates (I) Ba2SrIn2O6 and (II) Sr0.93Ba0.07In2O4 were prepared and investigated by single crystal X-ray technique. I crystallizes with tetragonal symmetry, space group D – I4/mmm, a = 4.168; c = 21.290 Å; Z = 2; II belongs to the orthorhombic space group D – Pnma, a = 9.858; b = 3.273; c = 11.520 Å; Z = 4. I shows in respect to the formerly investigated compound BaSr2In2O6 an unexpected statistically distribution of Ba2+ and Sr2+ with the La2SrCu2O6 type. II marks the range of existence of the calciumferrite type within the alkaline earth oxoindates in direction of large radii of M2+ ions.  相似文献   

9.
The Structures of the Hexagonal Elpasolite-Type Compounds Ba3NiSb2O9 and Ba3CuSb2O9 The results of an X-ray single crystal study of the hexagonal elpasolite Ba(NiSb2)(6)O9 are given. (Space group: C; a = b = 5.837 Å, c = 14.392 Å; Z = 2). The structure can be described by close-packed BaO3 layers alternating in the sequence c c h c c h … (hex. BaTiO3 type). Groups of two octahedra with common faces are connected by SbO6 octahedra via common corners. They are occupied alternately by Ni and Sb. The final reliability index was R = 3.0%. The Cu2+-compound is of the same structural type. The ligand field and EPR spectra are discussed in comparison with related Ni2+ and Cu2+ compounds.  相似文献   

10.
About Ternary Oxocuprates. X. On Ba2Cu3O4Cl2 The preparation of Ba2Cu3O4Cl2 and results by single crystal X-ray methods are described (a = 5.517, c = 13.808 Å; Space group D–I4/mmm). A so far unknown arrangement of square coordinated Cu2+ was detected. The Cu2+/O2?-squares are partly completed to a distorted octahedral coordination by two Cl?.  相似文献   

11.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

12.
On Hexagonal Perovskites with Cationic Vacancies. XXVII. Systems Ba4?xSrxBIIRe2□O12, Ba4B CaxRe2□O12, and Ba4?xLaxBIIRe2?xWx□O12 with BII = Co, Ni In the systems Ba4?xSrxBIIRe2□O12, Ba4BCaxRe2□O12 and Ba4?xLaxBIIRe2?xWx□O12 (BII = Co, Ni) hexagonal perovskites with a rhombohedral 12 L structure (general composition A4BM2□O12; sequence (hhcc)3; space group R&3macr;m) are observed. With the exception of Ba4NiRe2□O12 the octahedral net consists of BO6 single octahedra and M2□O12 face connected blocks (type 1). In type 2 (Ba4NiRe2□O12) the M ions are located in the single octahedra and in the center of the groups of three face connected octahedra. The two outer positions of the latter are occupied by B ions and vacancies in the ratio 1:1. The difference between type 1 and 2 are discussed by means of the vibrational and diffuse reflectance spectra.  相似文献   

13.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

14.
On Hexagonal Perovskites with Cationic Vacancies. XXIV. Rhombohedral 9 L Stacking Polytypes in the Systems Ba3W M □O9?x/2x?2 with MV = Nb, Ta In the system Ba3WNb□O9?x/2x/2 stacking polytypes of rhombohedral 9 L type (sequence (hhc)3; space group R3 m) can be prepared with ~1/3 ? × ? 2. For x = 2(Ba3Nb2□O8□) two modifications are formed. In the corresponding Ta system the phase with is reduced to a smaller region with x ? 1/3.  相似文献   

15.
On Hexagonal Perovskites with Cationic Vacancies. XXX. 5 L Stacking Polytypes in the Systems BaO — Re2O7? Sb2O5 and BaO? WO3? Sb2O5 In the systems BaO? Re2O7? Sb2O5 and BaO? WO3? Sb2O5 phases of composition Ba5BaRe Sb□O15?xx (x = 0 up to x ? 3/4) and Ba5BaWSb□O15?x/2x/2 (x ? 3/2 up to x ? 2) are existent, which have an orthorhombic distorted 5 L structure. The pure Sb compound has to be formulated as Ba3BaSb2O9 and crystallize in an orthorhombic variant of the hexagonal BaTiO3 type.  相似文献   

16.
From the study of the hypothetical series Pb[PbInc–2pSbc]O6+p (O ? p < 1; 0 ? c < 2), the existence of the cubic pyrochlore Pb2II[In0.5Sb1.5]O6.5 has been established. This compound was obtained as an orange yellow powder, S.G. Fd4 m (No. 227), Z = 8, a = 10.5892(1) Å, V = 1187.38(3) Å3, Dc = 8.48 M gm?3. For Pb in 16(c) positions, In and Sb (1:3) randomly distributed in 16(d), oxygen atoms in 48(f) and in a half of the 8(a) sites, and oxygen positional parameter x = 0.429 (origin at center, 3 m), R = 0.062. The apparent interatomic distances (Å) are determined: Pb? O = 2.612; (In, Sb)? O = 2.019.  相似文献   

17.
On Hexagonal Perovskites with Cationic Vacancies. XIV. The Rhombohedral 12 L-Stacking Polytypes Ba2La2BII(W □O12) Rhombohedral 12 L-stacking polytypes with cationic vacancies of type Ba2La2BII-(W□O12) are reported for BII = Mg, Zn (white), Ni(light brown) and Co(brown). They crystallize in the space group R3 m, sequences (3 )(1) ? (hhcc)3. For BII = Cu, as a consequence of the Jahn Teller effect, a triclinic distorted lattice is observed.  相似文献   

18.
About the New Compound Zn4Ta2O9 The hitherto unknown compound Zn4Ta2O9was prepared by high temperature reaction (CO2-LASER technique). The X-ray investigation of single crystal shows monoclinic symmetry (space group C? C2/c) with a = 15.002(6), b = 8.954(1), c = 10.345(4)Å and β = 93.64(3)°. Zn4Ta2O9 consists of a Zn/O-network with incorporated one-dimensional TaO6-chains. The edge connected TaO6-octahedrals are occupied by Ta5+ and 0.5 Zn2+ respectively. The crystal chemistry of this compound in respect to other Zn-oxotantalates are discussed.  相似文献   

19.
On Alkaline Earth Metal Oxothallates. II. Preparation and Crystal Structure of Ba2Tl2O5 Ba2Tl2O5 was prepared and investigated by X-ray single crystal methods (space group D? Pcmn, a = 6.264, b = 17.258, c = 6.05 Å) Ba2Tl2O5 is isotypic with Ca2Fe2O5.  相似文献   

20.
On Ruthenium perovskites of type Ba2BRuO6 and Ba3BRu2O9 with B = Indium, Rhodium The black perovskites Ba2InRu5+O6 and Ba3InRu2O9 (mean oxydation state of ruthenium: +4.5) adopt the hexagonal BaTiO3 structure and form a continuous series of mixed crystals. According to the intensity calculations and analysis of the vibrational spectroscopic data an ordered distribution between indium and ruthenium is present: 1:1 order in Ba2InRuO6 (space group P3 m1 ? D; R′ = 5.3%); 1:2 order in Ba3InRu2O9 (space group P63/mmc ? D; R′ = 4.6%). The corresponding black Rh compounds, Ba2RhRuO6 and Ba3RhRu2O9, crystallize in the rhombohedral 9 L type of BaRuO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号