首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Core–shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were labeled either with an energy donor or with an energy acceptor, in two different syntheses. These particles were used in a second stage as seeds for the synthesis of the core–shell particles. The PPy shell was polymerized around the PBMA core latex in an oxidative chemical in situ polymerization. Proofs for the success of the core–shell synthesis were obtained using nonradiative energy transfer (NRET) and atomic force microscopy (AFM). NRET gives access to the rate of polymer chain migration between adjacent particles in a film annealed at a temperature above the glass-transition temperature T g of the particles. Slower chain migration of the PBMA polymer chains was obtained with the PBMA–PPy core–shell particles compared to rate of the PBMA polymer chain migration found with the pure, uncoated PBMA particles. This result is due to the coating of PBMA by PPy, which hinders the migration of the PBMA polymer chains between adjacent particles in the film. This observation has been confirmed by AFM measurements showing that the flattening of the latex film surface is much slower for the core–shell particles than for the pure PBMA particles. This result can again be explained by the presence of a rigid PPy shell around the PBMA core. Thus, these two complementary methods have given evidence that real core–shell particles were synthesized and that the shell seriously hinders film formation of the particles in spite of the fact that it is very thin (thickness close to 1 nm) compared to the size (750 and 780 nm in diameter) of the PBMA core. Transparency measurements confirm the results obtained by NRET and AFM. When the films are placed at a temperature higher than the T g of PBMA, the increase in transparency is faster for films made with the uncoated PBMA particles than for films made with the coated PBMA particles. This result indicates again that the presence of the rigid PPy layer around the PBMA core reduces considerably the speed at which the structure of the film is modified when heated above the T g of PBMA. Received: 02 September 1999 Accepted: 21 December 1999  相似文献   

2.
Structured latexes provide a promising route to hard coatings without the use of coalescing aids. We studied the thermomechanical properties of films from structured soft‐core/hard‐shell hydrophobic latexes. We found that the mechanical properties of these films were closely related to their very particular organization. When the rigid phase was continuous, whatever its volume fraction, the films exhibited a high elastic modulus. An analysis of the viscoelastic properties of the films provided a good method for obtaining information about the interphase between the hard shell and soft core of the latex particles. By varying the film structure through annealing or the particle composition (core/shell ratio, core crosslinking, etc.), we were able to tune the mechanical properties of the films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2989–3000, 2000  相似文献   

3.
 Three different styrene-butyl methacrylate copolymer latexes were prepared by a uniform procedure but introducing styrene (S), butyl methacrylate (BMA), and minor amounts of acrylic acid (AA), in three different orders: i) simultaneous monomers addition, which yielded {P(SBMA)}; ii) addition of S (and half of the AA) followed by BMA (and the remaining AA), yielding {PS/PBMA} and iii) the inverse order, {PBMA/ PS}. Product characterization was done by centrifugation in density gradients coupled to scattered light scanning photometry of the centrifugation tubes. IR and NMR spectra were obtained from bulk polymer as well as from isopycnic centrifugation fractions. In agreement with findings of other authors, the particles produced by simultaneous monomer addition {P(SBMA)} are made out of the statistical copolymer, whereas sequential monomer addition leads to the formation of latex with homopolymer domains. IR and NMR spectra of {PS/PBMA} and {PBMA/PS} are identical but isopycnic density band profiles of all three samples are distinct. Acrylic acid residues are not detected in the dialyzed latex, using both IR and NMR. Spectra of latex isopycnic fractions do also show significant differences arising from their monomer chemical compositions, but isopycnic centrifugation and spectral data do not reveal any correlation between particle density and monomer composition. Isopycnic centrifugation can thus solve two problems on latex characterization: first, it is a high-resolution preparative technique, unmatched by any other separation method. Second, it yields latex particle fingerprints, which are dependent on particle chemical characteristics, rather than on particle diameters. Received: 19 March 1996 Accepted: 29 August 1996  相似文献   

4.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

5.
This article reports the application of the Photo‐Induced Grating Relaxation technique (also known as Forced Rayleigh Scattering) to investigate the dynamics of films prepared from structured core–shell latex particles via the transport property of the photochromic tracer molecule Aberchrome 540®. The core–shell particles were prepared with a fluoropolymer core (immiscible and impenetrable to the tracer) and a poly(butyl methacrylate) shell. The incompletely dried films (with residual water) manifest their spatial heterogeneity via non‐Fickian behavior (spatial scale‐ dependent apparent diffusion coefficient). The diffusion data was interpreted using the two‐state diffusion model, previously developed to describe the tracer diffusion in latex films without any core–shell structure. In contrast to dry latex films made from homogeneous particles, where one observes Fickian diffusion indicative of a homogeneous polymer film, we find that the lattice of fluoropolymer cores leads to a length scale dependent diffusion coefficient for the tracer. This effect can be interpreted as microscopic evidence for a strain hardening effect due to the presence of a hardened layer of matrix polymer (= shell) surrounding the core, which act as nanofillers. This strain hardening effect could be quantified within the two‐state diffusion model in terms of tracer diffusion coefficients and root mean squared displacements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2823–2834, 2007  相似文献   

6.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

7.
Five poly(n-butyl methacrylate), PBMA, latex dispersions have been prepared, each incorporating a different fluorescent label, via a two-stage seeded emulsion polymerization. The resultant latices contain ca. 35% by weight total solids and are of 80 (+/-10) nm diameter as determined by photon correlation spectrometry. Luminescence spectroscopic techniques, namely fluorescence (and phosphorescence) excited state lifetime measurements in addition to time-resolved anisotropy experiments have provided useful information regarding the morphology, microviscosity and water permeability of the resultant particles. A picture of the PBMA colloid emerges of an interior which is highly viscous and water impermeable in nature. Indeed, the environment is protective enough to sustain room temperature stabilized phosphorescence from both an acenaphthylene and 9-phenanthrylmethyl methacrylate labeled dispersion through simple nitrogen purging of the solutions. However, the current spectroscopic measurements should be viewed with the knowledge that each luminescent label may fashion its own distinctive microenvironment within the latex during polymerization.  相似文献   

8.
Monodisperse homogeneous and core–shell latex particles of various sized between 200 and 600 nm were synthesized by emulsion copolymerization. Some of the core–shell particles were functionalized with epoxy groups at their peripheries upon introduction of glycidyl methacrylate (GMA) during the synthesis. The core consisted of crosslinked polybutylacrylate and the shell polymethylmethacrylate. Synthesis conditions at high and low temperatures were optimized to obtain coreshell particles with a well-defined morphology. The particles were characterized by quasi-elastic light scattering, scanning electron microscopy and transmission electron microscopy. The latex particles functionalized with GMA were then dispersed into a reactive matrix (styrene and maleic anhydride copolymer) using a batch mixer to obtain blends with well-defined and stabilized morphology. 4 Dimethylaminopyridine was used as a catalyst. The reaction between the epoxy groups at the particle surface and the maleic anhydride or diacid groups of the matrix was evaluated by torque and extraction techniques. A small amount of conversion generates sufficient amounts of grafted species at the matrix and particle interfaces to ensure a good interfacial adhesion.  相似文献   

9.
Stable colloidal dispersions of nanostructured semifluorinated acrylic particles with an unfluorinated core and an outer layer consisting of copolymers of the highly hydrophobic and lipophobic heptadecafluorodecyl methacrylate (FMA) were successfully synthesized with the assistance of three different cyclodextrins as phase‐transfer catalysts: β‐cyclodextrin (β‐CD), hydroxypropyl β‐cyclodextrin (HpCD), and methyl β‐cyclodextrin (MeCD). While all the cyclodextrins form a stable inclusion complex (IC) with FMA, only the ICs with the more hydrophilic HpCD and MeCD are soluble in water. Nevertheless, incorporation of FMA in the particle shell copolymer could be achieved also when using β‐CD. On the other hand, the morphology of the nanostructured particles was characterized by a “patchy” fluorinated shell dependent on the cyclodextrin used, the best results being obtained with MeCD. A monomer‐starved semicontinuous emulsion polymerization procedure was essential to favor the CD‐mediated incorporation of FMA into the copolymer structure and to achieve a stable colloidal dispersion even in the presence of small amounts of mixed anionic–nonionic surfactants. The thermal and surface properties of the latex films showed a good correlation with the shell composition and patchy nanostructured morphology of the particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

11.
Fluorescence techniques (including time-resolved anisotropy measurements, TRAMS) have been used to probe differences in morphology between two stabilized aqueous latex dispersions (poly(n-butyl methacrylate), PBMA, and polyurethane, PU). Use of the emission characteristics of probes such as pyrene and phenanthrene dispersed within particles reveals that the PU latices are more heterogeneous in nature: evidence exists, particularly from quenching measurements and TRAMS, that voids and channels of water permeate the PU structure, resulting in a relatively soft, open particle, swollen by ingress of the bulk aqueous phase. Fluorescence measurements indicate that PBMA colloids, however, are composed of relatively hard, hydrophobic particles. In addition, TRAMS are considered to be a valuable tool both for probing the morphological characteristics of such dispersions and in estimating the average particle size.  相似文献   

12.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

13.
Composite polyacrylate latex particles were prepared through a simple method by dissolving organosilicon monomer methyltrimethoxysilane in a monomer mixture of acrylic monomers methyl methacrylate (MMA), n‐butyl acrylate (n‐BA), and acrylic acid (AA). With the addition of water needed for hydrolysis, methyltrimethoxylsilane hydrolyzed under catalysis by AA and further condensed to form polymeric methylsilsesquioxane (MSQ). The monomer mixture containing in situ‐formed MSQ was then subjected to emulsification and emulsion polymerization. Transmission electron microscopy (TEM) images showed that the obtained latex particles had a core–shell structure. Differences between the X‐ray photoelectron spectroscopy (XPS) results of the contents of silicon atoms on surfaces of films formed at temperatures above and below glass transition temperatures (Tgs) of polyacrylate evidenced that the cores were made up of MSQ and the shells were made up of polyacrylate. The static water contact angle measurements indicated that the incorporation of MSQ can result in composite latex with higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

15.
The influence of solvent annealing on microscopic deformational behavior of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile deformation was studied by small-angle X-ray scattering. It was demonstrated that the microscopic deformation mechanism of the latex films transformed from a nonaffine deformation behavior to an affine deformation behavior after solvent annealing. This was attributed to the interdiffusion of polymeric chains between adjacent swollen latex particles in the film. It turns out that solvent annealing is much more efficient than thermal annealing due to a much slow evaporation process after solvent annealing.  相似文献   

16.
Water dispersible latex particles with randomly mixed shells or chain segregated surface are synthesized from one‐pot reversible addition–fragmentation chain transfer heterogeneous polymerization of benzyl methacrylate (BzMA) using a mixture of poly(glycerol monomethacrylate) (PGMA) and poly(2,3‐bis(succinyloxy)propyl methacrylate) (PBSPMA) macromolecular chain transfer agents. In methanol, the two in situ synthesized PGMA‐b‐PBzMA and PBSPMA‐b‐PBzMA diblock copolymers coaggregate into spherical micelles, which contain PBzMA core and discrete PGMA and PBSPMA nanodomains on the shell. In contrast, in water–methanol mixture (V/V = 9/1), latex particles with homogeneous distribution of PGMA and PBSPMA polymer chains on the shell are obtained. The reasons leading to formation of latex particles with homogenous or chain‐segregated surface are discussed, and polymerization kinetics and physical state of PBSPMA in methanol and water–methanol mixtures are ascribed. These polymeric micelles with patterned functional group on the surface are potentially important for application in supracolloidal hierarchical assemblies and catalysis.

  相似文献   


17.
 The effect of alkali-soluble resin (ASR), poly(ethylene-co-acrylic acid), EAA, postadded to emulsifier-free monodisperse poly(butyl methacrylate) (PBMA) latexes on the kinetics of film formation was investigated using atomic force microscopy (AFM). Corrugation height of latex particles in films was monitored at various annealing temperatures as a function of annealing time. Enhanced polymer diffusion was found in a latex film containing ASR regardless of anneal-ing temperature. With increasing annealing temperature, a much higher rate of polymer diffusion was found in latex films containing ASR. These results can be interpreted that the low molecular weight and low Tg EAA resin adsorbed at the particle surface is more susceptible to diffusion than that of the PBMA in the film formation stage, thus it enhances the mobility of PBMA polymer. Received: 30 October 1997 Accepted: 20 March 1998  相似文献   

18.
Diblock copolymers containing polystyrene(PSt) and polybutyl methacrylate(PBMA) segments and random copolymer of styrene (St) and butyl methacrylate(BMA) have been prepared by atom transfer radical polymerization (ATRP).Diblock copolymers of BMA and St with predetermined molecular weight(1×10^4-6.5×10^4) and narrower molecular weight distribution(1.25-1.5) were obtained.The random copolymer compositions were determined by ^1HNMR spectroscopy and the reactivity ratios were evaluated by the extended Kelen-Tudos method to be YSt=0.91,YBMA=0.32.  相似文献   

19.
The aqueous phase of a poly(butyl methacrylate) (PBMA) latex dispersion contained an oligomeric component that was isolated after sedimentation of the PBMA latex particles. The component contained both water‐soluble PBMA oligomer and some longer chain species that were present as a very fine colloidal dispersion. We describe the isolation and characterization of this component. This component was then added to a purified PBMA latex dispersion from which the aqueous component was previously removed. Latex films were prepared, and in the presence of the oligomeric material, the rate of polymer diffusion in the latex film was strongly enhanced. The magnitude of the enhancement was fit quantitatively to the Fujita–Doolittle equation, indicating that the oligomers acted like a traditional plasticizer to increase the free volume in the system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3933–3943, 2000  相似文献   

20.
Micron-sized, monodisperse polystyrene (PS)/poly( n-butyl methacrylate) (PBMA) composite particles, in which PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles (PS/BMA=1/150, w/w) using various concentrations of benzoyl peroxide as initiator in the absence/presence of sodium nitrite (NaNO 2) as a water-soluble inhibitor. The percentages of the composite particles having double, triple and over PS domains, which were thermodynamically unstable morphologies, increased with a rapid increase of viscosity within the polymerizing particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号