首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transition Metal Phosphido Complexes. VIII. X-Ray Diffraction Studies of Transition Metal Phosphorus Four- and Six-Membered Ring Complexes. Structures of [(CO)4MnPH2]2, [(CO)4MnPH2]3, and [cpNiPH2]3 [(CO)4MnPH2]2 1 crystallizes triclinic in the space group P1 with a = 680.4 pm, b = 706.4 pm, c = 919.1 pm, α 110.5°, β = 91.92°, γ 115.65°, and Z = 1 formula unit. The molecule exhibits a centrosymmetrical structure. The bond angles within the planar four-membered (Mn? P)2-ring are 76.1° at the Mn atoms and 103.9° at the P atoms, respectively. The average Mn? P bond distance is found to be 235.1 pm. [(CO)4MnPH2]3 2 crystallizes monoclinic in the space group P2/n with a = 905.2 pm, b = 974.8 pm, c = 1264.2 pm, β = 109.1°, and Z = 2 formula units. The framework of the six-membered (Mn? P)3-ring can be described as having a twist boat conformation. The average endocyclic bond angles are with 89.1° at the Mn atoms and 130.1° at the P atoms, respectively, largely widened compared to 1 . The average Mn? P bond distance, which is found to be 238.5 pm, is also slightly increased compared to 1 . [cpNiPH2]3 3 crystallizes rhombohedral in the space group R3. The cell constants (hexagonal setting) are a = b = 1686.1 pm, c = 561.1 pm and Z = 3 formula units. The six-membered (Ni? P)3-ring exhibits a chair conformation. The endocyclic bond angles are with 92.3° at the Ni atoms and 124.3° at the P atoms, respectively, comparable with those of the six-membered ring compound 2 . The Ni? P bond distance is found to be 215.2 pm. The eyclopentadienyl ligands are disordered and have been refined as rigid groups.  相似文献   

2.
Transition Metal substituted Gallanes: Synthesis and X-Ray Structures of [(CO)4CoGaEt2(NC7H13)], [(PMe3)(CO)3CoGaCl2(NMe3)], [(CO)4CoGaCl3]K, and [(CO)5MnGaEt2(NC7H13)] The transition metal substituted gallanes [(CO)5MnGaEt2(NC7H13)] ( 1 ), [(PMe3)(CO)3CoGaCl2 · (NMe3)] ( 2 ), [(CO)4CoGaEt2(NC7H13)] ( 3 ), and [(CO)4CoGaCl3]K ( 4 ) were obtained by the reaction of the potassium/sodium salts of the manganese- and cobaltcarbonylmetallates with the chlorogallium species ClGaEt2(NC7H13), Cl3Ga(NMe3), and GaCl3. The structures were established by single crystal X-ray analysis 1 : space group P21/c (I.T.-No.: 14); Z = 4; a = 1425.4(2) pm, b = 1007.4(1) pm, c = 1429.9(3) pm; β = 113.92(1)°; 2 : space group P21/m (I.T.-No.: 11); Z = 2; a = 746.1(1) pm, b = 1131.2(1) pm, c = 1061.5(1) pm; β = 101.87(1)°; 3 : space group P21/c (I.T.-No.: 14); Z = 8; a = 1405.9(2) pm, b = 1786.2(2) pm, c = 1430.9(2) pm; β = 91.47(1)°; 4 : space group P21/c; Z = 4; a = 1185.7(1) pm, b = 895.4(1) pm, c = 1144.7(3) pm; β = 106.47(2)°. The model compounds [{L′(CO)3Co}GaX2L] (L′ = CO, PH3; L = NH3, X = H, Cl) with polar σ(Co–Ga) bonds and the effect of the substituent on the bond length are characterized with DFT-calculations.  相似文献   

3.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

4.
The rare‐earth metal germanides RE2Ge9 (RE = Nd, Sm) have been prepared by thermal decomposition of the metastable high‐pressure phases REGe5 at ambient pressure. The compounds adopt an orthorhombic unit cell with a = 396.34(4) pm; b = 954.05(8) pm and c = 1238.4(1) pm for Nd2Ge9 and a = 395.46(7) pm; b = 946.4(2) pm and c = 1232.1(3) pm for Sm2Ge9. Crystal structure refinements reveal space group Pmmn (No. 59) for Nd2Ge9. The atomic pattern resembles an ordered defect variety of the pentagermanide motif REGe5 (RE = La; Nd, Sm, Gd, Tb) comprising corrugated germanium layers. These condense into a three‐dimensional network interconnected by eight‐coordinated germanium atoms. The resulting framework channels along [100] enclose the neodymium atoms. With respect to the atomic arrangement of the pentagermanides, half of the interlayer germanium atoms are eliminated in an ordered way so that occupied and empty germanium columns alternate along [001]. The rare‐earth metal atoms of both types of compounds, REGe5 and RE2Ge9, exhibit the electronic states 4f 3 and 4f 5 (oxidation state +3) for neodymium and samarium, respectively, evidencing that the modification of the germanium network leaves the electron configuration of the metal atoms unaffected.  相似文献   

5.
New Research of Reaction Behaviour of Triorganylcyclotriphosphines. The Crystal Structures of [(PPh3)2Pt(PtBu)3], [(PPh3)2Pd(PtBu)2], [(CO)4Cr{(PiPr)3}2], [RhCl(PPh3)(PtBu)3], [(NiCO)62-CO)3{(PtBu)2}2], and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] By the reaction of triorganylcyclotriphosphines with transition metal complexes single- and polynuclear compounds are formed, in which the cyclophosphines are bonded in different ways to the metal, the ring either preserving structure or under going ring opening. Depending on the reaction conditions the following compounds can be characterized: [(PPh3)2Pt(PtBu)3] ( 1 ), [(PPh3)2Pd(PtBu)2] ( 2 ), [(CO)4Cr{(PiPr)3}2] ( 3 ), [RhCl(PPh3)(PtBu)3] ( 4 ), [(NiCO)62-CO)3{(PtBu)2}2] ( 5 ) and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] ( 6 ). The structures of 1 – 6 were obtained by X-ray single crystal structure analysis ( 1 : space group P21/n (No. 14), Z = 4, a = 1279.6(3) pm, b = 1733.1(4) pm, c = 2079.1(4) pm, β = 90.20(3)°; 2 : space group P21/c (No. 14), Z = 4, a = 1053.3(2) pm, b = 2085.2(4) pm, c = 1855.7(4) pm, β = 98.77(3)°; 3 : space group P 1 (No. 2), Z = 2, a = 1022.6(2) pm, b = 1026.4(2) pm, c = 1706.0(3) pm, α = 82.36(3)°, β = 86.10(3)°, γ = 64.40(3)°; 4 : space group P 1 (No. 2), Z = 2, a = 980.2(2) pm, b = 1309.5(3) pm, c = 1573.4(3) pm, α = 99.09(3)°, β = 99.46(3)°, γ= 111.87(3)°; 5 : space group P21/c (No. 14), Z = 4, a = 1804.0(5) pm, b = 2261.2(6) pm, c = 1830.1(7) pm, β = 96.99(3)°; 6 : space group P21/c (No. 14), Z = 4, a = 943.2(3) pm, b = 2510.6(7) pm, c = 1325.1(6) pm, β = 98.21(3)°).  相似文献   

6.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

7.
Syntheses and Crystal Structures of New Alkali Metal Rare‐Earth Tellurides of the Compositions KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) and CsLnTe2 (Ln = Nd) Of the compounds ALnQ2 (A = Na, K, Rb, Cs; Ln = rare earth‐metal; Q = S, Se, Te) the crystal structures of the new tellurides KLaTe2, KPrTe2, KNdTe2, KGdTe2, RbCeTe2, RbNdTe2, and CsNdTe2 were determined by single‐crystal X‐ray analyses. They all crystallize in the α‐NaFeO2 type with space group R3¯m and three formula units in the unit cell. The lattice parameters are: KLaTe2: a = 466.63(3) pm, c = 2441.1(3) pm; KPrTe2: a = 459.73(2) pm, c = 2439.8(1) pm; KNdTe2: a = 457.83(3) pm, c = 2443.9(2) pm; KGdTe2: a = 449.71(2) pm, c = 2443.3(1) pm; RbCeTe2: a = 465.18(2) pm, c = 2533.6(2) pm; RbNdTe2: a = 459.80(3) pm, c = 2536.5(2) pm, and CsNdTe2: a = 461.42(3) pm, c = 2553.9(3) pm. Characteristics of the α‐NaFeO2 structure type as an ordered substitutional variant of the rock‐salt (NaCl) type are layers of corner‐sharing [(A+/Ln3+)(Te2—)6] octahedra with a layerwise alternating occupation by the cations A+ and Ln3+.  相似文献   

8.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

9.
Eu5Ge3 and EuIrGe2 were prepared from the elements in tantalum tubes, and their crystal structures were determined from single crystal X-ray data. Eu5Ge3 adopts the structure of Cr5B3: I4/mcm, a = 799.0(1)pm, c = 1 536.7(1)pm, Z = 4, wR2 = 0.0421 for 669 F2 values and 16 variables. The structure of Eu5Ge3 contains isolated germanium atoms and germanium atom pairs with a Ge? Ge distance of 256.0 pm. Eu5Ge3 may be described as a Zintl phase with the formulation [5 Eu2+]10+[Ge]4?[Ge2]6?. Magnetic investigations of Eu5Ge3 show Curie-Weiss behaviour above 50 K with a magnetic moment of μexp = 7.6(1) μB which is close to the free ion value of μeff = 7.94 μB for Eu2+. EuIrGe2 is isotypic with CeNiSi2: Cmcm, a = 445.5(2) pm, b = 1 737.4(4) pm, c = 426.6(1) pm, Z = 4, wR2 = 0.0507 for 295 F2 values and 18 variables. The structure of EuIrGe2 is an intergrowth of ThCr2Si2-like slabs with composition EuIr2Ge2 and AlB2-like slabs with composition EuGe2 in an AB stacking sequence. Both slabs are distorted when compared to the symmetry of the prototypes. The Ge? Ge distance of 256.6 pm in the AlB2-like fragment is comparable to that in Eu5Ge3.  相似文献   

10.
Crystal Structure of Tb2Se3 Single crystals of Tb2Se3 could be prepared by chemical transport reaction with AlCl3. By starting from TbSe1.9 and terbium metal black needles of Tb2Se3 in the U2S3 type structure with the space group Pnma and a = 1113,0(1) pm, b = 402,4(1) pm and c = 1095,1(3) pm were obtained.  相似文献   

11.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

12.
New Complexes of the Lanthanoides with Bidentate Ligands. The Crystal Structures of [(C17H17N2)GdBr2(thf)2] and [(C17H17N2)3Ln] (L = Sm, Gd) Reaction of [(AIP)Li] with GdBr3 leads to a new mononuclear complex [(AIP)GdBr2(thf)2] 1 . In contrast to this with SmI2 the compound [(AIP)3Sm] 2 is build up. Such complexes are also formed with Gd(OR*)3 (R* = OtBu2C6H3) and [(AIP)Li] in a 1:3 ratio, [(AIP)3Gd] 3 . The structures of 1–3 were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (No. 33), Z = 4, a = 1 972.7(9) pm, b = 984.7(5) pm, c = 1 425.0(8) pm, α = β = γ = 90°; 2 · 2 THF: space group C2/c (No. 15), Z = 8, a = 3 644.4(9) pm, b = 1 437.5(5) pm, c = 2 334.4(7) pm, β = 1 21.07(6)°; 3 : space group P2(1)/c (No. 14), Z = 4, a = 1 872.9(1) pm, b = 1 064.6(1) pm, c = 2 282.4(2) pm, β = 103.75(8)°).  相似文献   

13.
Transition Metal Phosphido Complexes. XVI. Structures of two Open-Chain, PH2-Bridged Bimetallic Complexes cp(CO)2Fe(μ-PH2)MLn (MLn = Fe(CO)4, MnMecp(CO)2) cp(CO)2Fe(μ-PH2)Fe(CO)4 1 crystallizes monoclinic in the space group P21/c with a = 733.6 pm, b = 1089.8 pm, c = 1761.6 pm, β = 99.65°, and Z = 4 formula units. The bond distances of the bridging phosphorus atom to the two iron units Fe(1)(CO)4 and cp(CO)2Fe(2) differ with 229.0 pm (P? Fe(1)) and 226.5 pm (P? Fe(2)), respectively, only slightly. The angle Fe(1)? P? Fe(2) is with 124.8° surprisingly large for four-coordinate phosphorus. The coordination at Fe(1) is trigonal bipyramidal with axial phosphorus. The ligand sphere at Fe(2) corresponds to the so-called “piano stool” arrangement. cp(CO)2Fe(μ-PH2)MnMecp(CO)2 2 crystallizes monoclinic in the space group P21 with a = 750.1 pm, b = 2234.5 pm, c = 974.1 pm, β = 106.23°, and Z = 4 formula units. The P? Fe bond distance is found to be 230.0 pm, the P? Mn bond distance 224.3 pm. The angle Fe? P? Mn is with 126.8° even somewhat larger than the corresponding angle in 1 . Including the bridging PH2-group both transition metals of 2 achieve a kind of “piano stool” arrangement for their ligand sphere.  相似文献   

14.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

15.
Alkali Metal Bismuthides ABi and ABi2 — Synthesis, Crystal Structure, Properties The Zintl phases ABi (A = K/Rb/Cs; monoclinic, space group, P21/c, a = 1422.3(2)/1474.2(2)/1523.7(3), b = 724.8(1)/750.2(1)/773.7(1), c = 1342.0(2)/1392.1(2)/1439.9(2) pm and β = 113.030(3)/113.033(2)/112.722(3)°, Z = 16) crystallize with the β‐CsSb structure type containing chains of two‐connected Bi atoms. Hence, and according to calculated electronic structures, they are semiconductors with small band gaps of approx. 0.5 eV. In contrast, the compounds ABi2 (A = K/Rb/Cs; cubic, space group Fd3¯m, a = 952.1(2)/962.4(8)/972.0(3) pm, Z = 8) belong to the Laves phases, showing a typical metallic electrical conductivity and no band gaps.  相似文献   

16.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

17.
Crystal Structure of Ag2Ge2O5: A New Ge2O52? Network Structure Ag2Ge2O5 was prepared from the binary oxides at high O2 pressures. Single crystal X-ray diffraction work indicated monoclinic symmetry (P21/c; a = 1101.3(2); b = 1006.3(1); c = 1221.9(3) pm; ß = 94.6(1)°). The structure was determined by direct methods (3372 independent structure factors) and refined to a conventional R value of 0.084. A new Ge2O52? network structure was found with germanium coordinated octahedrally (­d(Ge—O) = 188,7 pm) and tetrahedrally (­d(Ge—O) = 175,9 pm), in equal proportions, by oxygen. The polyhedra share vertices and edges, thus forming a three dimensional channel system, which is occupied by Ag+ ions. The shortest Ag—Ag distance of 284 pm, like the pale yellow colour of the compound, indicates Ag+—Ag+ interaction.  相似文献   

18.
Single Crystal X-Ray Analysis of Compounds with Covalent Metal—Metal Bonds. IV. Molecular and Crystal Structure of Mn2(CO)8[μ-Sn(Br) Mn(CO)5]2 Mn2(CO)8[μ-Sn(Br)Mn(CO)5]2 crystallizes in the monoclinic crystal system (a = 881.7 pm; b = 1237.6 pm; c = 1551.1 pm und β = 63.54°) in the space group P21/n with two formula units in the cell. The structure was solved by means of 2601 symmetrically independent reflections using the heavy atom method. The central molecule fragment of Mn2(CO)8 · [μ-Sn(Br)Mn(CO)5]2 consists of a planar Mn2Sn2 rhombus with a Mn? Mn-bond (Mn? Mn = 308.6(1) pm) across the metal ring. Besides the bonds to both Mn ring atoms each Sn(IV) atom has a terminal bond to a Br and Mn(CO)5 ligand, building up a distorted tetrahedron around the Sn(IV) atom. The terminal ligands in Mn2(CO)8[μ-Sn(Br)Mn(CO)5]2 are in transposition with respect to the ring. The mean values for the remaining bond distances are: Sn? Mn = 263.0(1) pm; Sn? Br = 255.4(1) pm; Mn? C = 184.4(6) pm; C? O = 113.3(7) pm. A comparison of the Sn2Mn2 ring with similar metal rings has been given.  相似文献   

19.
Synthesis and Structure of Tetrafluoroaurates(III), TlF2[AuF4], M2F[AuF4]5 (M = Y, La, Bi), Sm[AuF4]3 with an Appendix on Sm[AuF4]2 In the system MF3/AuF3 the structures of several yellow Tetrafluoroaurates(III) have been determinated. TlF2[AuF4] crystallizes tetragonal, space group P41212 – D (Nr. 92) with a = 573.17(4) pm, c = 2780.4(3) pm, Z = 8; M2F[AuF4]5 (M = Bi, La) tetragonal, space group P41212 – D (Nr. 92) with a = 822.89(5) pm, c = 2557.1(3) pm, Z = 4 (Bi); with a = 836.80(3) pm, c = 2602.2(2) pm, Z = 4 (La); Y2F[AuF4]5 monoclin, space group P2/n – C (Nr. 13) with a = 1188.9(3) pm, b = 797.4(2) pm, c = 895.7(3) pm, β = 89.18(3), Z = 4 and Sm[AuF4]3 trigonal, space group R3c – D (Nr. 167) with a = 1034.5(1) pm, c = 1614.1(3) pm, Z = 6. All these yellow crystals have been obtained by solid state reactions in autoclaves or sealed goldtubes.  相似文献   

20.
The Crystal Structures of ErSeI and NaErSe2 It is reported about attempts to synthesize lanthanoide selenidehalides of the formula LnSeX (X ? Cl, Br, I) exemplary for Ln ? Er. The relative stabilities of these compounds are discussed. X-ray crystal structure analysis revealed for the compounds ErSeBr and ErSeI the FeOCl-structure type (space group Pmmn, Z = 2, a = 406.3(5) pm, b = 559.2(6) pm, and c = 795(1) pm, and a = 418.26(6) pm, b = 558.4(1) pm, and c = 889.0(2) pm, respectively). A corresponding chloride was not found within the scope of this investigation. From the educts Er2Se3 and ErCl3 in the presence of NaCl as flux in Nb-ampoules the compound NaErSe2 was formed instead which crystallizes in an α-NaFeO2-type structure (space group R3 m, Z = 3, a = 408.41(2) pm and c = 2067.4(2) pm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号