首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
N-Acetylcysteine and nine N-acetylcysteine conjugates of synthetic origin were characterized by positive- and negative-ion plasma desorption mass Spectrometry. For sample preparation the electrospray technique and the nitrocellulose spin deposition technique were applied. The fragmentation of these compounds, which are best seen as S-substituted desaminoglycylcysteine dipeptides, shows a similar behaviour to that of linear peptides. In the positive-ion mass spectra intense protonated molecular ion peaks are observed. In addition, several sequence-specific fragment ions (A+, B+, [Y + 2H]+, Z+), immonium ions (I+) and a diagnostic fragment ion for mercap-turic acids (RM+) are detected. The negative-ion mass spectra exhibit deprotonated molecular ions and in contrast only one fragment ion corresponding to side-chain specific cleavage ([RXS]?) representing the xenobiotic moiety. In the case of a low alkali metal concentration on the target, cluster molecular ions of the [nM + H]+ or [nM - H]? ion type (n = 1-3) are observed. The analysis of an equimolar mixture of eight N-acetylcysteine conjugates shows different quasi-molecular ion yields for the positive- and negative-ion spectra.  相似文献   

2.
The three mono substituted N-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines 1–3 have been studied by positive-ion electrospray-ionization tandem mass spectrometry (ESI-MS/MS). Because of the neighboring-group participation, the MS/MS of [ 1 + H]+ and [ 2 + H]+ are essentially similar, while compound 3 can be easily distinguished from 1 and 2 because of the characteristic ions at m/z 218. However, with the source collision-induced dissociation (source-CID) MS/MS technique, the compounds 1 and 2 can be unambiguously distinguished by the signal of the pyrrolidinium ion (m/z 72) from their daughter ion (m/z 275). The source-CID MS/MS of the labeled compound N-(4-aminobutyl)-N-(3-aminopropyl)-N-[3-(4- hydroxyphenyl)prop-2-en[15N]amide] ([15N(4)]- 2 ) provide more information on the decomposition mechanisms and proved the occurrence of a partial transamidation reaction 2→1 during the measurement.  相似文献   

3.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
N‐(3‐Ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8 were prepared by coupling either 3‐ferrocenylnaphthalene‐2‐carboxylic acid or 6‐ferrocenylnaphthalene‐2‐carboxylic acid to the dipeptide ethyl esters GlyGly(OEt) (1, 5), AlaGly(OEt) (2, 6), GlyPhe(OEt) (3, 7) and GlyLeu(OEt) (4, 8), using the standard N‐(3‐dimethylaminopropyl)‐N'‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. Electrospray ionization mass spectrometry (ESI‐MS) and laser desorption ionization mass spectrometry (LDI‐MS) were employed in conjunction with tandem mass spectrometry in the analysis of N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8. Radical cations, [M]+? and [M + H]+ species were both observed in the mass spectra. Intense sodium [M + Na]+ and potassium [M + K]+ adducts were also present. An important diagnostic ion at m/z [M–65]+ was observed in both the MS and MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide derivatives. Sequence‐specific ions were generally not observed in the MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) series due to formation of the diagnostic [M–65]+ ion. Sequence‐specific ions were observed in the MS/MS spectra of the N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide esters with charge retention on the derivatized N‐terminal of the dipeptide. Both series of compounds could be successfully analyzed by MALDI without the use of a matrix (LDI). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A gas chromatography-microchip atmospheric pressure photoionization-mass spectrometric (GC-μAPPI-MS) method was developed and used for the analysis of three 2-quinolinone-derived selective androgen receptor modulators (SARMs). SARMs were analyzed from spiked urine samples, which were hydrolyzed and derivatized with N-methyl-N-(trimethylsilyl)trifluoroacetamide before analysis. Trimethylsilyl derivatives of SARMs formed both radical cations (M+•) and protonated molecules ([M + H]+) in photoionization. Better signal-to-noise ratios (S/N) were obtained in MS/MS analysis using the M+• ions as precursor ions than using the [M + H]+ ions, and therefore the M+• ions were selected for the precursor ions in selected reaction monitoring (SRM) analysis. Limits of detection (LODs) with the method ranged from 0.01 to 1 ng/mL, which correspond to instrumental LODs of 0.2–20 pg. Limits of quantitation ranged from 0.03 to 3 ng/mL. The mass spectrometric response to the analytes was linear (R ≥ 0.995) from the LOQ concentration level up to 100 ng/mL concentration, and intra-day repeatabilities were 5%–9%. In addition to the GC-μAPPI-MS study, the proof-of-principle of gas chromatography-microchip atmospheric pressure chemical ionization-Orbitrap MS (GC-μAPCI-Orbitrap MS) was demonstrated.  相似文献   

6.
Trifluoromethylsulfonate (triflate) and bis(trifluoromethylsulfonyl)imide (triflimide) salts, well‐known Lewis acid catalysts, present some difficulty in their characterization. By using nitromethane as the solvent, useful electrospray mass spectra in positive and negative ion mode were obtained for salts of metals in oxidation states +2 and +3. In positive mode, addition of a strong Lewis base (triphenylphosphine oxide, TPPO), capable of displacing a triflate (TfO?) or a triflimide (Tf2N?) anion, is necessary for obtaining useful spectra. Under these conditions of solvent and added ligand, the most abundant ions were [M2+(A?)(TPPO)2]+ or [M3+(A?)2(TPPO)2]+ with A? = TfO? or Tf2N?. The MS/MS spectra of these diagnostic ions provide additional analytical information. The breakdown curves, in the form of % dissociated as a function of the ion activation energy, offer a mean for investigating the bonding in these ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

8.
Secondary ion mass spectra of N-methylpyridinium halides (C+X?, where C+ is a pyridinium cation and X? is a halogen anion) exhibit the C+ ions, a series of cluster ions ((C+)n(X?)n–1) and, furthermore, remarkable [CX – R]+ ions (R = H or Me). The mechanism of the formation of [CX – R]+ ions was investigated by the use of deuterated compounds and B/E and B2/E constant linked-scan measurements. A possible explanation is proposed in which the ions are produced through substitution reactions between species constituting the C2X+ cluster ions in the gas phase.  相似文献   

9.
Second‐order rate constants for the reactions of acceptor‐substituted phenacyl (PhCO?CH??Acc) and benzyl anions (Ph?CH??Acc) with diarylcarbenium ions and quinone methides (reference electrophiles) have been determined in dimethylsulfoxide (DMSO) solution at 20 °C. By studying the kinetics in the presence of variable concentrations of potassium, sodium and lithium salts (up to 10?2 mol L?1), the influence of ion‐pairing on the reaction rates was examined. As the concentration of K+ did not have any influence on the rate constants at carbanion concentrations in the range of 10?4–10?3 mol L?1, the acquired rate constants could be assigned to the reactivities of the free carbanions. The counter ion effects increase, however, in the series K+<Na+<Li+, and the sensitivity of the carbanion reactivities toward variation of the counter ion strongly depends on the structure of the carbanions. The reactivity parameters N and sN of the free carbanions were derived from the linear plots of log k2 against the electrophilicity parameters E of the reference electrophiles, according to the linear‐free energy relationship log k2(20 °C)=sN(N+E). These reactivity parameters can be used to predict absolute rate constants for the reactions of these carbanions with other electrophiles of known E parameters.  相似文献   

10.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The seeds of winter wheat were pretreated with three different doses of low-energy N+ beams, and its seedlings were subjected to UV-B irradiation (10.08?kJ?m?2?day?1) at three-leaves stage. The growth characteristic of seeds, the oxidative damage to membrane system induced by UV-B radiation, and the alleviating effects of N+ beams pretreatment to radiation damage were investigated. The results showed that the germination rate and seedling rate, respectively, increased 14.09?±?1.03 and 13.91?±?1.21?% compared with control (CK) at the dose of 4.0?×?1016 ions/cm2. When seedlings were exposed to UV-B radiation, the pretreatment method under the dose of 4.0?×?1016 ions/cm2 made the activity of peroxidase and superoxide dismutase increasing, the content of chlorophyll enhancing, but the content of malondialdehyde reducing significantly compared with that of the single UV-B radiation. Whereas, the activity of catalase irradiated by UV-B improved notably under the pretreatment dose of 8.0?×?1016 ions/cm2. In addition, after being irradiated with UV-B, the content of soluble protein and glutathione whose seeds were pretreated by the dose of 6.0?×?1016 ions/cm2 were higher than that of the single UV-B radiation. It was suggested that the suitable dose of low-energy ion beams pretreatment to wheat seeds could change its physiological characteristics at seedlings stage to alleviate the damage effects from UV-B radiation.  相似文献   

12.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

13.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

14.
A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI3 with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)nCs]+, and in the negative ion mode is [(CsI)nI]. In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations.  相似文献   

15.
Ion/molecule reactions of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) in 28‐Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14]+ were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N]+ formed by the reactions of N3+ with M. The reaction, N3+ + M → [M+N]+ + N2, were examined by the density functional theory calculations. It was found that N3+ abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R′R″C?NH2+ (i.e. C–H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N]+. That is, nitrogen is incorporated in the C–H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge‐transfer complexes benzene????N3+ and acetone????N3+ revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Hydralazine has been widely employed in the development of drugs, derivatization reagents, and ligands. In the present work, we reported a new type of dehydrogenated ion [M ? H]+ that was produced from the hydralazine derivative of hexanal in electrospray ionization mass spectrometry (ESI‐MS). The formation of [M ? H]+ ions in the ESI‐MS was found to be independent on the mobile phase composition of the liquid chromatography and ESI source parameters. A series of hydralazine derivatives of aldehyde were investigated to confirm this phenomenon. The results showed that hydralazine derivatives of aldehydes that contained an sp3 hybridization carbon with a hydrogen at the α‐position of aldehydes could form the unexpected [M ? H]+ ions, whereas hydralazine derivative of acetone could only generate [M + H]+ ion in the ESI‐MS. We proposed the possible formation mechanism of [M ? H]+ ion for the hydralazine derivatives of aldehydes: the [M ? H]+ ion was possibly formed by the loss a hydrogen molecule (H2) from the protonated ion [M + H]+. The results obtained from density functional theory (DFT) calculations supported this proposed formation mechanism of [M ? H]+ ion.  相似文献   

17.
Pulse radiolysis of an aqueous solution of mono-valent thallium ion and mixed solutions of Tl+/Ag+ in the presence of various amino polycarboxylic acids such as trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (DCTA), diethylenetriaminepentaacetic acid (DTPA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) and triethylenetetraminehexaacetic acid (TTHA) has been carried out. Abnormal valence states of Tl ions were generated. It is concluded that DCTA, DTPA, HEDTA and TTHA decrease the redox potential of Tl ions in aqueous solutions. It was observed that the electron transfer from complexed Tl2+ to Ag+ varied in the range 7.5 × 108 to 1.0 × 109, depending on the type of complexing ligand. Electron transfer from Tl2+ to Ag+ lead to the formation of silver atoms, which agglomerate further to form silver colloid.  相似文献   

18.
The reaction of peroxomonophosphoric acid and hydrazinium ion in acid perchlorate solutions occurs as per stoichiometry (i), and the rate law (ii) at large [N2H5 +], where K′d is the first acid dissociation constant of H3PO5 and k 1 and k 2 are rate constants found to be 2.6 × 10?4 s?1 and 5.0 × 10?2 M?1 s?1, respectively, at 35°. The reaction is greatly catalyzed by iodide ions. The mechanism involves a redox cycle I?/I2 and the rate is independent of [N2H5 +] in the presence of iodide ions. K′d was found to be 0.55 M?1 and independent of temperature.  相似文献   

19.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

20.
Methylation is one of the important posttranslational modifications of biological systems. At the metabolite level, the methylation process is expected to convert bioactive compounds such as amino acids, fatty acids, lipids, sugars, and other organic acids into their methylated forms. A few of the methylated amino acids are identified and have been proved as potential biomarkers for several metabolic disorders by using mass spectrometry–based metabolomics workstation. As it is possible to encounter all the N‐methyl forms of the proteinogenic amino acids in plant/biological systems, it is essential to have analytical data of all N‐methyl amino acids for their detection and identification. In earlier studies, we have reported the ESI‐MS/MS data of all methylated proteinogenic amino acids, except that of mono‐N‐methyl amino acids. In this study, the N‐methyl amino acids of all the amino acids ( 1 ‐ 21 ; including one isomeric pair) were synthesized and characterized by ESI‐MS/MS, LC/MS/MS, and HRMS. These data could be useful for detection and identification of N‐methyl amino acids in biological systems for future metabolomics studies. The MS/MS spectra of [M + H]+ ions of most N‐methyl amino acids showed respective immonium ions by the loss of (H2O, CO). The other most common product ions detected were [MH‐(NH2CH3]+, [MH‐(RH)]+ (where R = side chain group) ions, and the selective structure indicative product ions due to side chain and N‐methyl group. The isomeric/isobaric N‐methyl amino acids could easily be differentiated by their distinct MS/MS spectra. Further, the MS/MS of immonium ions inferred side chain structure and methyl group on α‐nitrogen of the N‐methyl amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号