首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemistry of photoacid generator (PAG), diphenyliodonium 9,10-dimethoxyanthracene-2-sulfonate (DIAS) and diphenyliodonium 8-anilinonaphthalene-1-sulfonate (DIANS) was investigated in both alkalinesoluble polyimide (6FDA-AHHFP) and novolak films. The quantum yields of photodissociation of DIAS and DIANS in both 6FDA-AHHFP and novolak films. The quantum yields of photodissociation of DIAS and DIANS in both 6FDA-AHHFP and novolak films were determined as 0.11, 0.21, 0.12 and 0.26, respectively. On the other hand, the quantum yields for acid generation from DIAS and DIANS in both of these films were 0.07, 0.18, 0.09 and 0.22, respectively, in the presence of an acid indicator. These results indicate that the values of the quantum yields of photodissociation and photoacid formation for DIAS and DIANS in 6FDA-AHHFP film are lower than those in novolak film. In order to elucidate the lowering of the quantum yields in 6FDA-AHHFP film, fluorescence quenchings of sodium 9,10-dimethoxy-anthracene-2-sulfonate and ammonium 8-anilinonaphthalene-1-sulfonate by a model compound of polyimide was carried out in acetonitrile. The fluorescences of these two salts were efficiently quenched by the model compound with the diffusion-controlled rate constant in acetonitrile, suggesting that a strong electron-accepting capability of the imide carbonyl group may hinder the electron transfer process within PAG molecules in 6FDA-AHHFP film. Although a polyimide (6F-THP) protected by tetrahydropyranyl group is insoluble in aqueous base, 6F-THP film containing PAG became soluble in a 2:1 mixture of 2.0 wt% tetramethylammonium hydroxide (TMAH) and methanol by exposure to 365 nm light and successive post-exposure baking (PEB) at 120°C for 10 min. The sensitivity and contrast of 6F-THP with DIANS after the PEB conditions mentioned above were 110 mJ/cm2 and 3.7, respectively. A high-resolution pattern with a good profile was transferred into the 3 μm thickness of the 6F-THP film.  相似文献   

2.
In a positive photoresist composed of diphenyliodonium 9,10-dimethoxyanthracene-2-sulfonate as a novel photoacid generator, bisphenol A protected with tertbutoxycarbonyl group as a dissolution inhibitor, and a novolak resist matrix, the efficiency of photo-acid generation and deprotective reaction were investigated by means of UV-visible and IR spectroscopies. The quantitative measurement of photogenerated acid by using the acid-sensitive dye exhibited 0.18 as the quantum yield of acid generation in novolak resin film. The lithographic evaluation of this system as a chemically amplified resist was studied. The catalytic chain length for the acid-catalyzed deprotection step was determined as about 100 when 10 min post-exposure bake (PEB) at 80°C was given. The sensitivity and the resolution as a positive resist are 180 mJ/cm2 and higher than 1 μm, respectively under the PEB conditions mentioned above.  相似文献   

3.
A versatile method for positive-type patterning of polyimide (PI) based on a two-layer photosensitive poly(benzoxazole) (PSPBO) and poly(amic acid) (PAA) film has been developed to provide a promising material in the field of microelectronics. This patterning system consisted of a pristine PAA thick bottom-layer and a poly(o-hydroxy amide) (PHA) thin top layer with 9,9-bis[4-(tert-butoxycarbonyl-methyloxy)phenyl]fluorene (TBMPF) as a dissolution inhibitor, and (5-propylsulfonyloxyimino-5H-thiophene-2-ylidene)-(2-methylphenyl)-acetonitrile (PTMA) as a photoacid generator (PAG). The PHA and PAA were prepared from 4,4′-(hexafluoroisopropylidene)-bis(o-aminophenol) and 4,4′-oxybis(benzoic acid) derivatives, and 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 4,4′-oxydianiline, respectively, in N,N-dimethylacetamide. This two-layer system based on PHA (150-nm thickness) and PAA (1.5-μm thickness) showed high sensitivity of 35 mJ/cm2 and high contrast of 10.3 when exposed to a 365 nm line (i-line), post-baked at 100 °C for 2 min, and developed in a 2.38 wt.% tetramethylammonium hydroxide aqueous solution/5 wt.% iso-propanol at 25 °C. A clear positive image of a 4-μm line-and-space pattern was printed on a film which was exposed to 100 mJ/cm2 of i-line by a contact-printing mode and fully converted to the corresponding PBO/PI pattern upon heating at 350 °C, confirmed by FT-IR spectroscopy. This two-layer system could be applied to the patterning of various PAAs.  相似文献   

4.
A mild method for the deprotection of THP ethers catalyzed by iron(III) tosylate (2.0 mol %) in CH3OH has been developed. Iron(III) tosylate, Fe(OTs)3·6H2O, is a commercially available solid that is inexpensive, noncorrosive, and easy to handle. The room temperature reaction conditions make this method attractive for deprotection of a range of THP ethers.  相似文献   

5.
A number of polyimide films incorporated with different amounts of octa(aminopropylsilsesquioxane) (POSS-NH2) were prepared from 1,2,4,5-Benzenetetracarboxylic anhydride, 4,4′-Oxydianiline and POSS-NH2. The structure and properties of the hybrid polyimide films were characterized and evaluated. It is found that, compared with pure polyimide without POSS-NH2, the thermal stabilities and electrical capabilities of hybrid polyimide films are improved. Meanwhile, the incorporation of POSS-NH2 also brings improvement in the flexibility of polyimide films.  相似文献   

6.
Four different types of cross-linked polyimides based on 4,4-diphenylmethane diisocyanate (MDI) were prepared by the reaction of different types of conventional poly(amic acid) intermediates with MDI as a cross-linking agent. Subsequently, they were thermally imidized in order to obtain corresponding cross-linked polyimide structure. The results of FTIR-ATR showed that MDI can effectively react with carboxylic acid groups of PAA to form cross-linked polyimide films. TGA, FTIR-ATR and SEM analyses were carried out for characterization of cross-linked polyimide (CPI) films. Moreover, the electrical properties such as dielectric breakdown strength, dielectric constant, I-V characteristics and loss factor of MDI based cross-linked polyimides have been checked. In addition, some physical properties such as water uptake, adhesion, hardness and solubility properties of the films were investigated.The results showed that all CPI films have good insulating properties such as high dielectric breakdown voltage, low loss factor (tan δ), leakage density and excellent physical properties.  相似文献   

7.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

8.
A novel type of asymmetric induction originating from the chiral center of a THP protecting group was observed. The induction amounted to a 14:1 diastereoselection on addition of 1 to ethyl pyruvate. Selectivities of 3:1 to 13:1 were observed on addition of 5 to various aldehydes.  相似文献   

9.
A new aromatic diamine monomer, N-(4-(9H-carbazol-9-yl)phenyl)-3,5-diaminobenzamide, was successfully prepared in four steps using carbazole as starting material and polymerized with three aromatic tetracaboxylic acid dianhydrides via the conventional two-stage synthesis including the polyaddition and chemical cyclodehydration to produce a series of the aromatic polyimides. The polyimides were characterized by FT-IR, 1H NMR, and 13C NMR spectroscopy, differential scanning calorimetric (DSC) and thermo gravimetric analysis (TGA) analysis. The polyimides with inherent viscosities in the range of 0.38–0.46 dL/g showed excellent solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine and dioxane. DSC showed the glass transition temperatures (Tg) in the range of 277–288 °C. TGA showed that all polymers were stable, with 10% weights loss recorded above 524 °C in air atmosphere. Preliminary tests on films of the polyimides indicate that the materials are brittle.  相似文献   

10.
Simple and efficient photoacid generators (PAGs) for carboxylic and sulfonic acids based on N-acyl-N-phenylhydroxylamines have been demonstrated. Irradiation of o-carboxylates and thermally rearranged o-arenesulfonates of N-acyl-N-phenylhydroxylamines using UV light (≥254 nm) in aqueous methanolic solution resulted in efficient generation of carboxylic and sulfonic acids, respectively. The carboxylic acid generation ability of N-acyl-N-phenylhydroxylamines was found to be dependent on their N-acyl substituents. Further, polymer bearing o-arenesulfonates of N-acyl-N-phenylhydroxylamine was synthesized and demonstrated as PAG for sulfonic acids.  相似文献   

11.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

12.
A negative‐type photosensitive polyimide (PSPI) based on semialicyclic poly(amic acid) (PAA), poly(trans‐1,4‐cyclohexylenediphenylene amic acid), and {[(4,5‐dimethoxy‐2‐nitrobenzyl)oxy]carbonyl} 2,6‐dimethylpiperidine (DNCDP) as a photobase generator has been developed as a next‐generation buffer coat material. The semialicyclic PAA was synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and trans‐1,4‐cyclohexyldiamine in the presence of acetic acid, and the PAA polymerization solution was directly used for PSPI formulation. This PSPI, consisting of PAA (80 wt %) and DNCDP (20 wt %), showed high sensitivity of 70 mJ/cm2 and high contrast of 10.3, when it was exposed to a 365‐nm line (i‐line), postexposure baked at 190 °C for 5 min, and developed with 2.38 wt % tetramethylammonium hydroxide aqueous solution containing 20 wt % isopropanol at 25 °C. A clear negative image of 6‐μm line and space pattern was printed on a film, which was exposed to 500 mJ/cm2 of i‐line by a contact printing mode and fully converted to poly(trans‐1,4‐cyclohexylenebiphenylene imide) pattern upon heating at 250 °C for 1 h. The PSPI film had a low coefficient of thermal expansion of 16 ppm/K compared to typical PIs, such as prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐oxydianiline. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1317–1323, 2010  相似文献   

13.
A series of aromatic homo- and copolyetherimides was prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride with 2,4,6-trimethyl phenylenediamine, 3,3-dimethyl-4,4-methylene dianiline, and 3,5-diaminobenzoic acid. The gas permeability coefficients of the copolyetherimides to H2, CO2, O2, N2 and CH4 were measured under 10 atm and at 30°C. A significant change in the permeability and permselectivity resulting from the systematic variation in chemical composition was found. The experimental values of the gas permeability coefficients and permselectivity coefficients of the copolyetherimides are in satisfactory agreement with the values estimated from the gas permeability coefficients of the constituent homopolyimides and their weight fractions.  相似文献   

14.
Chemically crosslinked polyimide organic–inorganic composite nanofiltration membranes suitable for application in harsh organic solvents were successfully prepared by phase inversion of dope solutions. TiO2 nanoparticles were dispersed in these dope solutions, comprising polyimide (PI) in N,N-dimethylformamide/1,4-dioxane. The impact of TiO2 on the resulting PI membranes was investigated using SEM, TGA, water contact angle, dope viscosity measurements and mechanical strength. The presence of TiO2 nanoparticles within the membrane matrix was proved by the detection of a peak characteristic of TiO2 in the WAXS pattern. SEM pictures of the cross-section of the PI/TiO2 membranes showed dramatically changed morphology compared to reference membranes with no TiO2 addition. Macrovoids present in reference membranes were suppressed by increasing loading of TiO2 nanoparticles, and eventually disappeared completely at a TiO2 loading above 3 wt.%. Decreasing water contact angle and an increase in ethanol flux indicated that hydrophilicity increased as nanoparticle loading increased. The effect of TiO2 on the functional performance of the membranes was evaluated by measuring flux and rejection using cross-flow filtration. Perhaps surprisingly, the presence of TiO2 improved the compaction resistance of the membranes, whereas rejection and steady flux were almost unaltered.  相似文献   

15.
One of fluorinated polyimides was synthesized from 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3′-dimethyl-4,4′-diaminodiphenylmethane (DMMDA) by two-steps method, which had good solubility and hydrophilicity. 6FDA-DMMDA polyimide was dissolved in chloroform (CHCl3) and cast on a glass substrate in a humid atmosphere. It was found that 6FDA-DMMDA/CHCl3 solution was easy to form ordered porous structure at high concentration, and the reason was discussed in detail. In addition, the influences of solution concentration, the atmosphere humidity, were also tested.  相似文献   

16.
A series of perylene-containing random copolyimides with different ratios of diaminododecyl perylene tetracarboxylic dianhydride (PPI-12) and 4,4′-(hexafluoro-isopropylidene) diphthalic anhydride (6FDA) have been studied. Copolymerization improves the solubility and the copolyimide with a low percentage (less than 20% of total dianhydrides) of perylene becomes highly soluble in conventional solvents, such as, CHCl3, CH2Cl2, or THF etc. The positions of the absorption maxima in the UV-visible spectra do not change with 6FDA concentration, but the relative intensities do. Although the homopolymer PPI-12 does not show a distinct glass transition, its Tg was derived by extrapolation of the DSC results with the copolymers. The copolymers are semi-crystalline up to a concentration of 60% (mol) 6FDA. It is of interest that the spacings of X-ray reflections also do not change with the addition of 6FDA. This is rationalized on the basis that the conformation of the 6FDA segment does not cause any significant difference in the preferred conformational shapes of the homopolymer of PPI-12. Due to this “conformational isomorphism” 6FDA is not a significant chain “kinker” in this case.  相似文献   

17.
This present report is devoted to the recent advances, in these last 10 years, in fluorinated analogues of natural products developed as pharmaceuticals, marketed, registered or in clinical development. These mainly concern fluorine-substituted nucleosides, alkaloids, macrolides, steroids, amino acids and prostaglandins.  相似文献   

18.
A positive-working photosensitive polyimide precursor based on fluorinated poly(amic acid) (FPAA) and 2,3,4-tris(1-oxo-2-diazonaphthoquinon-4-ylsulfonyloxy)benzophenone (D4SB) as a photosensitive compound has been developed. FPAA was prepared by ring-opening polyaddition of dianhydrides, pyromellitic dianhydride and biphenyltetracarboxylic dianhydride, with diamine, 2,2′-bis(trifluoromethyl)benzidine, in methanol. The FPAA film showed excellent transparency to UV light and good solubility in a wide range of organic solvents. The dissolution behavior of FPAA containing 30 wt % D4SB after exposure was studied, and it was found that the difference of dissolution rate between exposed and unexposed parts was enough to get high contrast due to the photochemical reaction of D4SB in the polymer film. The photosensitive fluorinated polyimide (FPI) precursor containing 30 wt % D4SB showed a sensitivity of 80 mJ cm−2 and a contrast of 7.8 with 365 nm light when it was developed with 0.3% aqueous tetramethyl ammonium hydroxide solution at room temperature. The FPI film cured up to 360°C had a low coefficient of thermal expansion of 10.3 ppm °C−1 and a low dielectric constant of 3.04. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2261–2267, 1998  相似文献   

19.
20.
A positive-type photosensitive polyimide ( PSPI ) based on a chain extendable poly(amic acid) ( PAA ), a thermally degradable cross-linker 1,3,5-tris[(2-vinyloxy)ethoxy]benzene ( TVEB ), and a photoacid generator (PAG) (5-propylsulfonyloxyimino-5H-thiophene-2-ylidene)-(2-methylphenyl)acetonitrile ( PTMA ) has been developed. The chain extendable PAA was prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride ( BPDA ) and 4,4′-oxydianiline ( ODA ) and end-capped with di-tert-butyl dicarbonate ( DIBOC ) in N-methyl-2-pyrrolidone (NMP), which has a controlled molecular weight for developing in a 2.38 wt% tetramethyl ammonium hydroxide aqueous solution ( TMAH aq ) and undergoes a chain extending reaction during curing stage. The photosensitive resist solution was formulated with the polymerization solution (30 wt% in NMP), TVEB (15 wt% for the polymer), and PAG (4.5 wt% for the polymer). The PSPI showed a sensitivity of 47 mJ cm−2 and a contrast of 5.8 when exposed to 365-nm light, followed by postexposure baking at 90 °C for 10 min and development with the 2.38 wt% TMAH aq at room temperature. A fine-positive image with 3-μm line-and-space patterns was obtained on a 3-μm thick film exposed to UV light at 365 nm in the contact-printed mode. After thermal curing at 350 °C for 1 hr, the resulting PSPI features excellent mechanical strength and elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号