首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry.  相似文献   

2.
Nitrido-Sodalites. III. Synthesis, Crystal Structure, and Properties of Zn8[P12N24]X2 with X = O, S, Se, Te The P? N-sodalites Zn8[P12N24]X2 with X = O, S, Se, Te are obtained by the reaction of HPN2 with the corresponding zinc chalcogenide ZnX at 750°C. They crystallize in a filled up variant of Zn7[P12N24]Cl2 and are isotypic to Zn8[B12O24]O2 (I4 3m, a = 823 to 830 pm, Z = 1). The P? N-sodalites contain in the center of their β-cages XZn46+ units which can be described as sections of II/VI-semiconductors. The UV/Vis-spectra of the compounds show in comparison with binary bulk zinc chalcogenides a blue shift of the absorption edge according to the size quantization effect.  相似文献   

3.
Synthesis and Crystal Structure of the Trimeric [(Me3Si)2CH]2Al? CN Tetrakis[bis(trimethylsilyl)methyl]dialane(4) 1 with an Al? Al bond reacts with tert-butyl isocyanide in the molar ratio of 1:2 within three days to give a mixture of several unknown products, from which the title compound 4 is isolated in a 26% yield by recrystallization from n-pentane. 4 is a trimer in the solid state via Al? C?N? Al bridges showing a nine-membered Al3C3N3 heterocycle in a boat conformation. In contrary to the reaction with phenyl isocyanide the expected dark red product of the twofold insertion into the Al? Al bond under formation of a carbon-carbon single bond is detected only spectroscopically as a minor by-product.  相似文献   

4.
The Crystal Structure of Tetrakis(di-tert.-butylphosphino)diphosphane [(tBu)2P]2P? P[P(tBu)2]2 [(tBu)2P]2P? P[P(tBu)2]2 1 obtained at ?20°C from a solution of (tBu)2P? P=P(Br)tBu2 forms yellow crystals (regular hexagons). 1 crystallizes monoclinic in the space group C2/c with a = 2145.6pm, b = 1137pm, c = 1696.1pm, β = 110.075° and Z = 4 formula units in the elementary cell. Due to high steric load the bond angles at the tertiary P atoms with δ = 115.7° are significantly larger than those at the primary P atoms with δ = 108.6°.  相似文献   

5.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster.  相似文献   

6.
SnCl2 as a Bridging Ligand in [{(CO)5M}2Sn(Cl)2]2? (M = Cr, Mo, W) — Synthesis, Structure, and Reactivity [{(CO)5Cr}2Sn(Cl)2]2?, 1 , may be obtained from [(CO)5Cr]2? or [(CO)5CrSnCl2 · THF] in fair yields. Alternatively, 1 is accessible by the reaction of [Cr2(CO)10]2? with SnCl2. This procedure may be extended to the synthesis of [{(CO)5M}2Sn(Cl)2]2? (M = Mo, 2 ; M = W, 3 ). The compounds 1–3 are crystallized as their alkalimetal (12-crown-4)2 or [2,2,2]cryptand salts. X-ray analyses demonstrate bridging SnCl2-moieties with M? Sn? M-angles close to 130° in each case. The relation of the bonding situation in 1–3 to the ones observed for stannylene or ?inidene”? complexes, respectively, is discussed. The transformation of 1 into the rhombododecahedral (X-ray analysis) Sn? O-cage compound [{(CO)5CrSn}63-O)43-OH)4], 4 , demonstrates the reactivity of the dianions 1–3 .  相似文献   

7.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

8.
Investigations on the Barogram and Melting Diagram of the Systems BiI3? HgI2 and BiI3? I2 The barograms of the systems BiI3? HgI2 and BiI3? I2 are determined by total pressure measurements in a membrane manometer. The melting diagrams follow from DTA measurements and the barogram. Both systems are eutectic with eutectica at 1.5 mol% BiI3 and 110°C for BiI3? I2 and 9 mol% BiI3 and 243°C for BiI3? HgI2.  相似文献   

9.
Reactions of tBu(Me3Si)P? P(Li)? P(tBu)2 with CH3Cl and 1,2-Dibromoethane tBu(Me3Si)P? P(Li)? P(tBu)2 · 0.95 THF 1 with CH3Cl (?70°C) yields tBu(Me3Si)P? P = P(Me)(tBu)2 2 at ?70°C, with 1,2-Dibromoethane tBu(Me3Si)P? PBr? P(tBu)2 3 (main product) and tBu(Me3Si)P? P?P(Br)tBu2 4. 3 eliminates Me3SiBr yielding the cyclotetraphosphane {tBuP? P[P(tBu)2]}2 5 .  相似文献   

10.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

11.
12.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

13.
The Phosphinophosphinidene-phosphoranes tBu2P? P = P(R)tBu2 from Li(THF)22-(tBu2P)2P] and Alkyl Halides We report the formation of tBu2P? P = P(R)tBu2 a and (tBu2)2PR b (with R = Me, Et, nPr, iPr, nBu, PhCH2, H2C = CH? CH2 and CF3) reactions of Li(THF)22-(tBu2P)2P] 2 with MeCl, MeI, EtCl, EtBr, nPrCl, nPrBr, iPrCl, nBuBr, PhCH2Cl, H2C = CH? CH2Cl or CF3Br. In THF solutions the ylidic compounds a predominate, whereas in pentane the corresponding triphosphanes b are preferrably formed. With ClCH2? CH = CH2 only b is produced; CF3Br however yields both tBu2P? P = P(Br)tBu2 and tBu2P? P = P(CF3)tBu2, but no b . The ratio of a:b is influenced by the reaction temperature, too. The compounds tBu2P? P = P(Et)tBu2 4a and (tBu2P)2PEt 4 b , e. g., are produced in a ratio of 4:3 at ?70°C in THF, and 1:1 at 20°C; whereas 1:1 is obtained at ?70°C in pentane, and 1:2 at 20°C. Neither tBuCl nor H2C = CHCl react with 2 . The compounds a decompose thermally or under UV irradiation forming tBu2PR and the cyclophosphanes (tBu2P)nPn.  相似文献   

14.
Synthesis and Molecular Structure of (N,N′-Dimethyl-piperazine)lithium-(·-hydrido)(tert-butyl)bis[bis(trimethylsilyl)methyl]alanate with an Intramolecular Interaction between Lithium and C? H-σ-Bonds Syntheses and properties of the starting compounds bis[bromo-di(tert-butyl)alane] 3 , bis[dibromo-tert-butyl-alane] 4 , and (tert-butyl)bis[bis(trimethylsilyl)methyl]alane 5 are described. In the presence of 5 and the chelating amine N,N′-dimethylpiperazine lithium tert-butyl gives via μ-elimination isobutene and LiH, which is taken up by the starting alane 5 to give the title compound 6 . No attack of the strong base (lithium alkyl/amine) to the bis(trimethylsilyl) methyl substituent is observed as recently occured for the sterically more crowded tris[bis(trimethylsilyl)methyl]alane. Crystal structure of 6 shows a angled Li? H? Al bridge and a short intramolecular contact between Li and C? H-σ-bonds of a trimethylsilyl group.  相似文献   

15.
Synthesis and structure of a Molybdenum–Gadolinium Heterometallic Complex. The Structure of [Li(thf)4]2[Cp2MoSGdBr4(thf)]2 [Cp2MoHLi] reacts in THF with S and GdBr3 to yield the tetranuclear heterobimetallic complex [Li(thf)4]2[Cp2MoSGdBr4(thf)]2. The bonding situation and the structure of this compound were characterized by X-ray structure analysis (space group P1 (No. 2), Z = 1, a = 10.845(2) Å, b = 12.166(2) Å, c = 15.881(2) Å, α = 101.74(2)°, β = 97.62(2)°, γ = 103.97(2)°). Each S atom of the central Mo2S2-ring is coordinated by a GdBr4(thf) fragment. Additionally each Mo atom is connected to two Cp ligands. This leads to a tetrahedral coordination of the Mo atoms and a octahedral coordination of the Gd ions.  相似文献   

16.
The Crystal Structure of tBu2P? P?P(Br)tBu2 tBu2P? P?P(Br)tBu2 1 crystallizes in the monoclinic space group P21/c with a = 2 888.9(3), b = 972.16(10), c = 1 534.04(14) pm, β = 105.129(8)° and 8 formula units in the unit cell. The two independent P3-units in 1 form angles of 105.77° or 105.98°, resp. One P? P distance (220,4 pm) corresponds to a single bond, the other one (207.9 pm) to a double bond.  相似文献   

17.
Coordination Chemistry of P-rich Phosphanes and Silylphasphanes. XIV. The Phosphinophosphinidene tBu2P? P as a Ligand in the Pt Complexes [η2-{tBu2P? P}Pt(PPh3)2] and [η2-{tBu2P? P}Pt(PEtPh2)2] [η2-{tBu2P? P}Pt(PPh3)2 1 and [η2-{tBu2P? P}Pt(PEtPh2)2] 2 are the first complex compounds of tBu2P? P 5 . They are formed in the reaction of tBu2P? P ? P(Me)tBu2 3 with [η2-{H2C ? CH2}Pt(PPh3)2] 6 or [η2-{H2C ? CH2}Pt(PEtPh2)2] 7 , respectively. Compound 1 is less stable than 2 and reacts on to [η2-{tBu2P? P} Pt(PPh3)(PtBu2Me)] 10 with the coincidently formed tBu2PMe. The molecular structures of 1 and 2 were derived from their 1H and 31P-NMR spectra, 2 was additionally characterized by a X ray structure determination. 2 crystallizes in the monoclinic space group P21/n with a = 1222.36(7) pm, b = 1770.7(1) pm, c = 1729.7(1) pm, β = 108.653(6)°.  相似文献   

18.
Preparation of Dithiatetrazocine and Secondary Reactions Li[PhCN2(SiMe3)2] ( 1 ) or PhCN2(SiMe3)3 ( 3 ) react with SCl2 to give in good yields the dithiatetrazocine PhC(NSN)2CPh ( 2 ). By analogy, p-MeC6H4C(NSN)2CC6H4Me-p ( 7 ), p-NO2C6H4C(NSN)2-CC6H4NO2-p ( 8 ), and p-CF3C6H4C(NSN)2CC6H4CF3-p ( 9 ) are obtained from the reaction of p-MeC6H4CN2(SiMe3)3 ( 4 ), Li[p-NO2-C6H4CN2(SiMe3)2] ( 5 ), und Li[p-CF3C6H4CN2(SiMe3)2] ( 6 ) with SCl2. Reaction of 2 /LiCl with AgAsF6 in liquid SO2 leads to [PhCN2S2]+[AsF6] ( 10 ) and 3[PhCN2S2]+2[AsF6]Cl ( 11 ). The structures of 10 and 11 are confirmed by X-ray analyses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号