首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bashir S  Mutter R  Derrick PJ 《The Analyst》2003,128(12):1452-1457
Dihydroxybenzoic acid was modified to three analogues (M2, M4 and M6). The analogues exhibited specific properties that resulted in enhancement of analyte signal intensity with or without addition of iodine compared to the underivatized parent. Addition of iodine to M2, an ester of dihydroxybenzoic acid that had a terminal double bond in the alkyl chain, resulted in peak intensities comparable to the parent, indicating that iodine interaction across the double bond resulted in enhancement although the exact mechanism is not fully understood. No enhancement on addition of iodine was observed for M4, which had a long alkyl chain that contained no double bonds. The alkyl chain allowed micelle formation in solution, which in turn allowed more uniform analyte-to-matrix mixing. The final analogue combined the long alkyl chain of M4 with the double bond of M2 and exhibited either similar peak intensities to that of dihydroxybenzoic acid or better. Micelle formation in solution was examined using spectroscopy and in the solid by reflective microscopy. The standard deviation from spot to spot was considerably lower relative to dihydroxybenzoic acid (RSD 3.4%vs. 14.2%). Unlike dihydroxybenzoic acid, the novel matrix M6 was able to yield characteristic peaks for analytes such as ubiquitin.  相似文献   

2.
Taxanes are biologically active compounds that have been extensively used in pharmacology for their powerful anticancer properties. High specificity and low level sensitivity for analysis of these compounds have been obtained with reversed-phase high-pressure liquid chromatography/mass spectrometry (RP-HPLC/MS), but the number of applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for low molecular weight analytes is rapidly growing. A new MALDI-MS approach for the rapid screening of a variety of taxanes and a tandem mass spectrometric (MS/MS) analysis of the most important and diagnostic taxane fragmentation pathways are proposed. A solid-phase extraction method followed by preliminary quantification is also reported.  相似文献   

3.
Visible matrix-assisted laser desorption/ionization (VIS-MALDI) was performed using 2-amino-3-nitrophenol as matrix. The matrix is of near-neutral pH, and has an optical absorption band in the near-UV and visible region. A frequency-doubled Nd:YAG laser operated at 532 nm wavelength was used for matrix excitation and comparisons were made with a frequency-tripled Nd:YAG laser (355 nm). Visible and ultraviolet (UV)-MALDI produce similar mass spectra for peptides, polymers, and small proteins with comparable sensitivities. Due to the smaller optical absorption coefficient of the matrix at 532 nm wavelength, the optical penetration depth is larger, and the sample consumption per laser shot in VIS-MALDI is higher than that of UV-MALDI. Nevertheless, VIS-MALDI using 2-amino-3-nitrophenol as matrix may offer a complementary technique to the conventional UV-MALDI method in applications where deeper laser penetration is required.  相似文献   

4.
We describe an improved sample preparation method for pulsed filament desorption–ionization mass spectrometry. Samples were deposited in the presence of an excess of liquid or solid matrices. Especially with liquid matrices such as glycerol, this allowed stable and reproducible ion production for a variety of compounds, including biomolecules and synthetic polymers. Substances with molecular weights up to 3000 Da could be desorbed, ionized, and detected by time-of-flight mass spectrometry.  相似文献   

5.
A method was developed for collection and analysis of bioaerosols by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry using a modified Andersen N6 bioaerosol collector. The overall goal of the study was to develop methods for obtaining mass spectra with minimal reagents and treatment steps for potential use in remote collection and analysis systems. Test bioaerosol particles were generated from a nebulized E. coli bacterial suspension and collected on MALDI targets placed in an Andersen N6 single-stage aerosol impactor. The bioaerosols were mixed with matrix either by deposition on a bare target with the matrix solution added later, or by deposition on a target pre-coated with matrix. The matrix compounds alpha-cyano-4-hydroxycinnamic acid (CHCA) and sinapic acid (SA) were tested and the SA matrix was found to give the best results in number of peaks, resolution, and signal-to-noise ratio. Deposition of bioaerosol particles onto the matrix pre-coated target did not produce signal in the m/z region above 1000, but the signal could be recovered with the addition of a 1:1 (v/v) acetonitrile/water solvent. Addition of solvent by pipette to the pre-coated targets after particle deposition recovered signal comparable to the dried-droplet sample preparations, whereas solvent sprayed into the impactor recovered fewer peaks. Deposition on pre-coated targets with post-collection solvent addition was superior to deposition on bare target followed by post-collection addition of matrix solution.  相似文献   

6.
7.
8.
Atandem reflectron time-of-flight mass spectrometer developed in our laboratory provides a unique opportunity to investigate the collision-induced dissociation of fullerene ions formed by matrix-assisted laser desorption/ionization (MALDI). Specifically, this opportunity arises from the ability to utilize high energy collisional activation (normally available only on tandem sector instruments by using continuous ionization techniques) for ions formed by pulsed laser desorption, whereas most MALDI time-of-flight instruments record product ion mass spectra of ions formed by metastable or postsource decay. In this study we investigate the products of mass-selected and collisionally activated C 60 + and C 70 + ions by using different target gases over a range of target gas pressures. In general, heavier target gases produce more extensive fragmentation and improve the mass resolution of lower mass ionic products because a greater portion of these ions are formed by single collisions. Additionally, the tandem time-of-flight instrument utilizes a nonlinear (curved-field) reflectron in the second mass analyzer that enables high energy collision-induced dissociation spectra to be recorded without scanning or stepping the reflectron voltage.  相似文献   

9.
Matrix-assisted laser desorption ionization (MALDI) time of flight mass spectrometry was used to identify shrimp at the species level using commercial mass spectral fingerprint matching software (Bruker Biotyper). In the first step, a mass spectrum reference database was constructed from the analysis of six commercially important shrimp species: Litopenaeus setiferus, Farfantepenaeus aztecus, Sicyonia brevirostris, Pleoticus robustus, Pandalopsis dispar and Pandalus platyceros. This step required a desalting procedure for optimum performance. In the second step, the reference database was tested using 74 unknown shrimp samples from these six species. Correct identification was achieved for 72 of 74 samples (97%): 72 samples were identified at the species level and 2 samples were identified at the genus level using the manufacturer's log score specifications. The MALDI fingerprinting method for the identification of shrimp species was found to be reproducible and accurate with rapid analysis.  相似文献   

10.
The use of a novel 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrix-assisted laser desorption/ionization (MALDI) matrix for detection and quantitative analysis of native N-linked oligosaccharides was investigated in this study. Substantial improvements in sensitivity were observed relative to the signals obtained with a traditional DHB matrix. Moreover, the morphology of the matrix crystal layer was very uniform, unlike that of DHB. This resulted in highly homogeneous sample distribution throughout the spot, allowing reproducible and consistent mass spectra to be obtained without spot-to-spot variations in signal. Here, we also demonstrate an approach for performing sensitive and accurate quantitative analysis of native N-linked glycans with this novel matrix using an internal standard method.  相似文献   

11.
We introduce a two-component matrix for ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI-MS) that consists of 2,5-dihydroxybenzoic acid (DHB) and glycerol. Upon slow evaporation of residual water/methanol solvents in a pre-vacuum chamber sample preparations are obtained that exhibit a homogeneous morphology with analyte-matrix crystals evenly distributed over the whole sample spot. At a molar DHB/glycerol ratio of approximately 1:5, the crystals range in length from approximately 100 to 300 microm and are about 15-30 microm wide. Mass spectra of peptides, proteins, and an oligosaccharide are presented and compared with those recorded from standard dried-droplet DHB matrix. The ion signals show a reproducibility of the order of 10-15% when scanning the surface of an individual sample or even different samples that contain the same amount of peptide, A close to linear relationship between peptide concentration and the corresponding peptide ion signal is found over three orders of magnitude of sample prepared. However, when a fixed position is irradiated with a large number of laser pulses, a monotonous decay of peptide ion signal with time is observed. Potentially, the binary matrix will be especially useful for the analysis of samples that are stabilized in buffered aqueous glycerol solution and preliminary results addressing this aspect are shown.  相似文献   

12.
A new beta-elimination procedure has been introduced to cleave O-linked oligosaccharides from low- to sub-microgram amounts of glycoproteins prior to analysis by mass spectrometry. Borane-ammonia complex in aqueous ammonia is used as a cleaving solution alternative to the sodium borohydride/sodium hydroxide medium conventionally used in beta-elimination. The procedure results in minimum sample purification, leading to minimal sample loss and consequently an overall enhancement in sensitivity. It was applied successfully in the analysis of bovine fetuin and submaxillary mucin, as well as to a complex bile-salt-stimulated lipase glycoprotein isolated from human milk.  相似文献   

13.
As one of the most prevalent and complex post-translational modifications in biological systems, proteins glycosylation has drawn considerable attention in recent decades. Dissociation of the carbohydrates from glycoproteins may be the prerequisite step of glycomics experiments, which commonly performed by specific proteolysis. In this study, an alternative strategy was reported with nonspecific proteolysis in coupling with co-derivatization of TMPP-Ac and methylamidation for glycan moieties analysis by MALDI-MS. With the co-derivatization, a permanent positive charge was introduced to the Asn-glycans and the carboxylic groups were neutralized by methylamidation simultaneously. As a result, approximately 20 and 50-fold enhancement in the detection sensitivity was achieved for asialo-Asn and disialo-Asn respectively in comparison to their native counterparts. Ultimately, this developed strategy was successfully validated using three model glycoproteins, including ribonuclease B, ovalbumin and transferrin.  相似文献   

14.
Application of matrix-assisted laser desorption/ionization (MALDI) to the analysis of dextran and dextrin derivatives, specifically glucose saccharides, by time-of-flight (TOF) mass spectrometry has been reported. MALDI-TOF analysis was carried out on alpha-, beta- and gamma-cyclodextrin, two O-methylated-beta-cyclodextrins of differing degrees of substitution (DS) and dextrans (a linear glucose saccharide), as pure and doped solutions and as mixtures of two or more of these. Doping was carried out with trace amounts of inorganic salts. The purpose of the analysis of the cyclodextrins was to determine whether they would form inclusion complexes with the various cations added, or whether less specific cation addition/exchange was occurring either prior to desorption or in the gas phase.  相似文献   

15.
Following the first demonstrations of high-mass analysis using time-of-flight matrix-assisted laser desorption/ionization (MALDI) techniques by Hillenkamp, Tanaka and their co-workers, there have been significant efforts in a number of laboratories to adapt the new methodology to Fourier-transform mass spectrometry (FTMS). The motivation for this research is obvious. Namely, it would be desirable to couple the unparalleled high mass resolution of FTMS with the extended mass range provided by MALDI, particularly for analysis of polymers and biomolecules. Unfortunately, prior to the present work, attempts to mate FTMS and MALDI have met with limited success. The highest mass matrix-assisted laser-desorption-FTMS result previously obtained appears to be the unpublished low resolution spectrum of bovine insulin recently reported by Russell and co-workers. We, Campana and co-workers, and Hettich and Buchanan have had some success with MALDI-FTMS of biomolecules with masses lower than 3000 Da, including melittin, a variety of lower mass peptides, and oligonucleotides with masses lower than 1800 Da. Furthermore, with the single exception of Campana's report of obtaining mass resolution of 5000 for the molecular ion of melittin, such spectra have not displayed high resolution. Here, we report successful development of MALDI-FTMS, demonstrated with spectra obtained from a variety of high-mass polymer and biomolecule samples, using 355 nm radiation from an excimer-pumped dye laser for desorption/ionization and sinapinic acid as matrix. Some of these spectra are of much higher mass resolution than is possible with current time-of flight mass spectrometers.  相似文献   

16.
Ionization and prompt fragmentation patterns of triacylglycerols, phospholipids (PLs) and galactolipids were investigated using matrix-assisted laser desorption/ionization (MALDI). Positive ions of non-nitrogen-containing lipids appeared only in the sodiated form, while nitrogen-containing lipids were detected as both sodiated and protonated adducts. Lipids containing acidic hydroxyls were detected as multiple sodium adducts or deprotonated ions in the positive and negative modes, respectively, with the exception of phosphatidylcholines. The positive MALDI spectra of triacylglycerols contained prompt fragments equivalent to the loss of RCOO(-) from the neutral molecules. Prompt fragment ions [PL-polar head](+) were observed in the positive MALDI spectra of all phospholipids except phosphatidylcholines. The phosphatidylcholines produced only a minor positive fragment corresponding to the head group itself (m/z 184). Galactolipids did not undergo prompt fragmentation. Post-source decay (PSD) was used to examine the source of prompt fragments. PSD fragment patterns indicated that the lipid prompt fragment ions did not originate from the observed molecular ions (sodiated or protonated), and suggested that the prompt fragmentation followed the formation of highly unstable, probably protonated, precursor ions. Pathways leading to the formation of prompt fragment ions are proposed.  相似文献   

17.
A novel matrix substance, 2-(4-hydroxyphenylazo) benzoic acid, or HABA, has been found to be very advantageous for matrix-assisted ultraviolet laser desorption ionization mass spectrometry. This compound has been successfully used for the desorption of peptides, proteins, and glycoproteins up to approximately 250 kDa. For these materials, the most abundant analyte-related peaks correspond to [M + H]+ ions and multiply protonated molecules. Comparisons with sinapic acid, 2,5-dihydroxybenzoic acid, and α-cyano-4-hydroxycinnamic acid indicate that the new matrix provides comparable sensitivity for peptides and smaller proteins but results in better sensitivity for larger proteins and glycoproteins in protein mixtures. Other matrices discriminate against the higher mass components in these cases. Somewhat reduced mass resolution has been found for smaller proteins, but for larger proteins and glycoproteins the best mass resolution can often be obtained with the new matrix. For other classes of compounds that form ions predominantly via cation attachment, at least as good sensitivity and even better resolution have been obtained. Derivatized glycolipids and synthetic polymers have been studied in detail. For the analysis of many synthetic polymers, the best performance in terms of sensitivity and mass resolution has been observed with HABA matrix. Mass resolution was higher for cation adducts than for the protonated peptide molecules in the same mass range. The new matrix exhibits greatly extended (in time) analyte ion production and reproducibility. Owing to the uniform sample surface with this matrix, barely any spatial variation of the ion signal could be observed. In addition, many hundreds of single-shot mass spectra could be accumulated from the same spot, even for larger proteins.  相似文献   

18.
We report the application of matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, with delayed extraction in the reflectron mode, for the characterization of low molecular weight dendrimers. 20 dendrimer samples were measured and 4 typical dendrimers, as examples, are discussed in detail. Several factors that affect the analysis including the matrices used, the concentrations of sample, the solvents and cationization reagent used, were investigated in detail. Experimental results indicate that the type of solvent can greatly influence exact mass measurement. However, sample preparation is generally not very critical for dendrimer analysis using MALDI-ToF since many kinds of matrices and a wide range of sample concentrations can be used efficiently. In addition, the Cs(+) ion can be used to enhance the efficiency of cationization. Some reasons for this behavior are discussed on the basis of results of calculations using Gaussian94 software (a connected system of programs for performing a variety of semi-empirical and ab initio molecular orbital (MO) calculations).  相似文献   

19.
DeKeyser SS  Li L 《The Analyst》2006,131(2):281-290
Herein we describe a novel method for quantitation using a Fourier transform mass spectrometer (FTMS) equipped with a MALDI ion source. The unique instrumental configuration of FTMS and its ion trapping and storing capabilities enable ion packets originating from two physically distinct samples to be combined in the ion cyclotron resonance (ICR) cell prior to detection. These features are exploited to combine analyte ions from two differentially labeled samples spotted separately and then combined in the ICR cell to generate a single mass spectrum containing isotopically paired peaks for quantitative comparison of relative ion abundances. The utility of this new quantitation via in cell combination (QUICC) approach is explored using peptide standards, a bovine serum albumin tryptic digest, and a crude neuronal tissue extract. We show that spectra acquired using the QUICC scheme are comparable to those obtained from premixing the isotopically labeled samples in solution. In addition, we show direct tissue in situ isotopic formaldehyde labeling of a crustacean neuroendocrine organ, thus demonstrating the potential application of the QUICC methodology for direct tissue quantitative analysis.  相似文献   

20.
Underivatized and permethylated gangliosides have been studied by the matrix-assisted laser desorption (MALD) ionization technique. The samples investigated included commercially available and highly purified gangliosides from the human brain containing up to five sialic acid residues. Several permethylated gangliosides have also been studied, and MALD has proven successful in analyzing multicomponent mixtures of glycolipids with different fatty acyl residues. During the studies a variety of matrix and wavelength combinations have been tested in both the positive and negative ion modes. The best results have been obtained with the matrices 2,5-dihydroxybenzoic acid, 4-hydrazinobenzoic acid, 1,5-diaminonaphthalene, and 6-aza-2-thiothymine. Negative ion mass spectra of the underivatized gangliosides have always been of better quality than the positive ion mass spectra, exhibiting better signal-to-noise ratio, better resolution, less fragmentation, and less adduct formation with Na+ and K+. With increasing number of sialic acid substituents the molecular ion region became less and less resolvable, leading to broadened peaks even in the negative ion mode. Fragmentation could frequently be observed in the negative ion mode, and it was pronounced in the positive ion mode. The major fragmentation pathways corresponded to loss of sialyl group(s) and to decarboxylation of one of the sialyl residues. For underivatized gangliosides the typical sample amount used was 10–20 pmol. Permethylation led to a significant improvement in sensitivity (two orders of magnitude); the detection limit of permethylated gangliosides was about 10 fmol. The higher stability of the permethylated compounds was indicated by the fact that positive ion mass spectra exhibited only a marginal extent of fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号