首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation, single crystal growth, and crystallographic properties of a close-packed, eight-layer, hexagonal (a = 5.803 Å, c = 19.076 Å) modification having the stoichiometry Ba8Nb6Li2O24 and of a close-packed, ten-layer, hexagonal (a = 5.760 Å, c = 23.742 Å) phase with Ba10W6Li4O30 stoichiometry are discussed. The isostructural Ba8Ta6Li4O24 form of the eight-layer phase was also prepared (a = 5.802 Å, c = 19.085 Å). Proposed crystal structures involve the pairing of lithium and metal (Nb, Ta, or W) octahedra to yield face-sharing units. The relationship of this phenomenon to other known close-packed phases containing Li is demonstrated. An investigation of the Ba8Nb6Li2O24Ba10W6Li4O30 system is reported.A tetragonal bronze phase homogeneity region was delimited at 1200°C in the BaONb2O5Li2O system. A new orthorhombic phase (a = 10.197 Å, b = 14.882 Å, c = 7.942 Å) was prepared with the stoichiometry Ba4Li2Nb10O30.  相似文献   

2.
On Hexagonal Perovskites with Cationic Vacancies. XX. Ba6Nb4Zr□o18 - a New Stacking Polytype with a Rhombohedra1 18 L Structure The white Ba6Nb4Zr□O18 crystallizes in a rhombohedral 18 L structure (a = 5.821 Å; c = 42.63 Å; space group R3 m) with three formula units for the trigonal setting (?exp = 6.05 g/cm3; ?calc = 6.271 g/cm3). The corresponding TiIV and HfIV compounds, Ba6Nb4Zr□O18 and Ba6Nb4Hf□O18, are isotypic.  相似文献   

3.
A New Praseodymiumniobate Pr2Nb11O30 By chemical vapor transport (T2 → T1, T2 = 950 °C, T1 = 900 °C, 3 d) of a mixture of PrOCl and Nb2O5 (1 : 1) using 5 mg NH4Cl as transport agent we obtained the new compound Pr2Nb11O30. The crystal structure determination [a = 6.2325(5) Å, c = 32.3677(36) Å, Z = 2, 1631 independent I0, 69 parameters, R1 = 2.07%] shows CN = 8 (twofold capped octahedrally) for Pr, CN = 7 (pentagonal bipyramidally) for Nb(1,2) and CN = 6 (octahedrally) for Nb(3). The structure is closely related to that of Cu5Ta11O30.  相似文献   

4.
Crystal Structure Investigations of Compounds with the A3(M, Nb)8O21-Type (A ? Tl, Ba; M ? Fe, Ni) Tl3Fe0,5Nb7,5O21 (A), a hitherto unknown phase of the A3(M, Nb)8O21-type, and Ba3Fe2Nb6O21 (B), Ba3Ni1.33Nb6,66O21 (C) were prepared and investigated by single crystal X-ray technique. ((A): a = 9.145(1), c = 11.942(1) Å; (B): a = 9.118(2), c = 11.870(1) Å; (C) a = 9.173(3), c = 11.923(1) Å, space group D? P63/mcm, Z = 2). There is a statistic occupation of the M-positions by Nb5+ and Fe3+ or Nb5+ and Ni2+, respectively. An other compound Ba3Fe2Ta6O21 is partially ordered in respect to Ta5+ and Fe3+. Calculations of the Coulomb-part of lattice energy are discussed.  相似文献   

5.
Solid state reaction of BaCO3, FeC2O4·2H2O and Nb2O5 gave single crystals of Ba6FeNb9O30. The crystal structure was solved by X-ray investigations (a=12.597,c=3.990Å, space group P 4 bm-C 4v 2 ,Z=1). Ba6FeNb9O30 crystallyzes in the tetragonal bronze type with a statistical distribution of Fe3+ and Nb5+ in the octahedral framework. The anisotropic temperature factors of barium are discussed with respect to the oxygen coordination.
  相似文献   

6.
Oxometallates of a new Type: On Ba3NaNbO6 and Ba3NaTaO6 For the first time in form of colourless, transparent single crystals of Ba3NaNbO6 [annealed mixtures of BaO, Na2O and Nb2O5, Ba : Na : Nb = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] as well as Ba3NaTaO6 [annealed mixtures of BaO, Na2O and Ta2O5, Ba : Na : Ta = 3.3 : 1.1 : 1, Ni-cylinder, 1100°C, 3d] have been prepared. The crystal structure was solved by fourcycle-diffractometer data [Ba3NaNbO6: Mo? Kα , 356 out 356 I0 (hkl), space group R3 c with a = 1026.6(1)pm, c = 1195.3(2)pm (Guinier-Simon powder data), Z = 6, R = 2.4%, Rw = 2.0% and Ba3NaTaO6: Ag? Kα , 498 out of 498 I0 (hkl), space group R3 c with a = 1027.6(1)pm, c = 1196.0(2)pm (Guinier-Simon powder data), Z = 6, R = 4.9%, Rw = 4.4%], parameters see text. The Ba3M part of structure (M = Nb, Ta) corresponds to a slightly (hexagonal) deformed Nb3Al arrangement with Na inserted along [001] between adjacent Mv, which are nearly perfectly octahedrally surrounded by 6 O. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Ionic Radii, MEFIR, as well as Charge Distribution, CHARDI, are calculated.  相似文献   

7.
The solid-phase interaction in the V2O5-Nb2O5-MoO3 system has been investigated, and the formation of a solid solution bounded by the compositions MoNb2V4O18 ? δ, Mo2NbV5O21 ? δ, Mo2Nb3V3O21 ? δ, and Mo4Nb9V9O57 ? δ has been found (δ is nonstoichiometry). In the V2O5?Nb2O5 system, the formation of three compounds is verified, namely, VNbO5 (tetragonal structure), VNb9O25, and V2Nb23O62.5. The first two compounds are isostructural and form a continuous solid solution with tetragonal symmetry. A new compound of the composition Mo3NbVO14 ? δ has been synthesized. This compound is isostructural to the Mo3Nb2O14 compound described in the literature and forms a tetragonal solid solution with it. The phase equilibria in the V2O5-Nb2O5-MoO3 system in the subsolidus region have been determined.  相似文献   

8.
Three new metal‐rich phases, Li4Na11Ba14LiN6, Li5Na10Ba14LiN6 and Na14Ba14LiN6 have been prepared and their crystal structure determined. According to single crystal and powder X‐ray diffraction data, all compounds crystallize with cubic unit cells (Li4Na11Ba14LiN6: , a = 17.874(2) Å, Z = 4, V = 5710(1) Å3; Li5Na10Ba14LiN6: , a = 17.799(1) Å, Z = 4, V = 5638.7(6) Å3; Na14Ba14LiN6: , a = 17.7955(5) Å, Z = 4, V = 5635.6(2) Å). The last mentioned compound crystallizes in the Na14Ba14CaN6 type, and both Li4Na11Ba14LiN6 and Li5Na10Ba14LiN6 have related structures. These compounds open a series of metal‐rich Ba nitrides, containing the new Ba14LiN6 cluster.  相似文献   

9.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

10.
The First Diniobate with ‘Isolated’ Anions: KLi4[NbO5]=K2Li8[Nb2O10] [1] . By heating of well ground mixtures of the binary oxides [K2O, Li2O, Nb2O5, K:Li:Nb=1.1:4.4:1, Pt-tube, 1100°C, 3d] colourless, triclinic single crystals of KLi4NbO5 have been prepared for the first time: space group P1 (Nr. 2) with a=816.9(2) pm, b=592.2(2) pm, c=589.7(2) pm, α=121.00(2)º, β=91.78(2)°, γ=99.23(2)°, Z=2. The crystal structure was solved by four-cycle diffractometer data [Mo-Kα , 1386 from 1386 Io(hkl), R=3.4%, Rw=2.6%], parameters see text. Characteristic for this structure are “isolated” groups of [Nb2O10] and the tetrahedral coordination of Li(1), Li(2), and Li(3). Li(4) has a tetragonal-pyramidal coordination. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, the Effective Coordination Numbers, ECoN and the charge distribution have been calculated and discussed.  相似文献   

11.
Several different kinds of planar defects have been observed by means of high-resolution electron microscopy in W4Nb26O77, such as disordered intergrowth of WNb12O33 and W3Nb14O44 structural slabs, locally ordered intergrowth with a sequence of AABAAB, two separate microdomains of WNb12O33 and W3Nb14O44 coexisting with W4Nb26O77 and a complicated intergrowth of W4Nb26O77, NNb2O5, W3Nb14O44, and Nb31O77F types of structure.  相似文献   

12.
On Some New Oxide Fluoride Phases of Tetragonal Tungsten Bronze Structure Six new oxide fluorides of tetragonal tungsten bronze type structure have been obtained by partial substitution of oxygen by fluorine in the ABCNb5O15 compounds (A = Ca, Sr, Ba; B = Ca, Sr, Ba; C = Na, K): CaK2Nb5O14F, SrK2Nb5O14F, SrKNaNb5O14F, BaK2Nb5O14F, BaKNaNb5O14F and BaNa2Nb5O14F. An investigation on Sr2?xK1+xNb5O15?xFx and Ba2?xNa1+xNb5O15?xFx solid solutions characterizes ferroelectric behaviour. Replacement of oxygen by fluorine decreases the Curie temperature, but for a small oxygenfluorine substitution rate an increase of the dielectric constant is observed.  相似文献   

13.
Contributions to the Investigation of Inorganic Non-stoichiometric Compounds. XIII. Oxidation Products of Monoclinic Nb12O29, Electron Optical Investigation The electron optical investigation shows that the starting material Nb12O29(mon.) is well ordered and that the oxidation products Nb2O5(Ox1BI) and Nb2O5(Ox2BI) have different structures. Nb2O5(Ox1BI) has a similar structure as Nb12O29(mon.), however differs from the latter by characteristic point defects, which in the electron microscope easily disappear by reduction. Nb2O5(Ox2BI) has not a well ordered structure; characteristic are rows of [2×n]-blocks which on the average are separated by five [3×n]-blocks. The average block length is n = 4 octahedra. The observed composition O/Nb = 2.500 can be explained by a structure model with unoccupied tetrahedral sites of Nb.  相似文献   

14.
Na(V3?xNbx)Nb6O14 — A Novel Oxoniobate with [Nb6O12] and [M2O9] Clusters Goldcolored single crystals and black powders of Na(V3?xNbx)Nb6O14 have been prepared by heating a pellet containing a mixture of NaNbO3, NbO2, NbO, VO2 and NaF or Na2B4O7 (as mineralizers) at 900°C in a sealed gold capsule. The analytically determined Nb : V ratio is 5 : 1 and means that x is about 1.5. The compound crystallizes in P63/m with a = 603.4(1), c = 1807.9(5) pm and Z = 3. The crystal structure can be described in terms of common close packing of sheets of O and Na atoms together with Nb6 octahedra. Characteristic building groups of the new structure type are [Nb6O12] clusters, [M2O9] clusters and NbO5 bipyramids. V atoms are distributed only on the positions of the Nb atoms within the trigonal bipyramids or the [M2O9] clusters. The [Nb6O12] clusters show characteristicaly short distances dNb-Nb = 279.4 and 281.3 pm, respectively. In the [M2O9] units, which are built from two MO6 octahedra that share a common face, V or Nb atoms form M–M dumbbells with dM–M = 255.9 pm. The electronic structure is discussed using Extended Hückel calculations.  相似文献   

15.
On Hexagonal Perovskites with Cationic Vacancies. XXVIII. Structure of Rhombohedral 9 L Stacking Polytypes Ba3W Nb □O9?x/2x/2 According to the intensity calculations for Ba3W4/3Nb2/3□O26/31/3 and Ba3Nb2□O8□(II) these rhombohedral 9 L compounds crystallize in the space group R3m, sequence (hhc)3. The refined, intensity related R′ values are 6.9% (Ba3W4/3Nb2/3□O26/31/3) and 7.2% (Ba3Nb2□O8□(II)). The relations between the rhombohedral 9 L structure (A3M2□O9) and the palmierite type (A3M2□O8□) are discussed.  相似文献   

16.
About a Mixed Valence Oxoniobate: Sr5Nb34+Nb25+O16 The hitherto unknown compound Sr5Nb5O16 was prepared and examined by X-ray single crystal work. It crystallizes with orthorhombic symmetry (space group D–Pmn21, a = 3.992(1), b = 32.476(10), c = 5.677(2) Å; Z = 2). Sr5Nb5O16 consists of stacked perovskite-like blocks cut by a plane perpendicular to the cube face diagonal of the perovskite structure. The coordination relations of the intersections between those blocks and the distribution of Nb5+ and Nb4+ are discussed.  相似文献   

17.
The orange cerium‐niobium‐oxysulfide Ce3NbO4S3 was synthesized by the solid state reaction of CeO2, Ce‐metal, Nb2O5 and sulfur at 1100 °C. The crystal structure has orthorhombic symmetry (space group Pbam, a = 7.055(1), b = 14.571(3), c = 7.627(2) Å, Z = 4) and contains isolated [Nb2S4O6]10− ions consisting of two strongly distorted, edge sharing NbO3SS2/2 octahedra. Niobium is connected to three oxygen and three sulfur atoms. The cerium atoms are eightfold coordinated by oxygen and sulfur atoms. Certain oxygen and sulfur atoms are not connected to niobium, but exclusively surrounded by cerium. By connecting these cation polyhedra, one recognizes layers of polycations perpendicular to the c‐axis. The magnetic susceptibility shows Curie‐Weiss behavior with an effective magnetic moment μeff = 2.63(1) μB/Ce in agreement with Ce3+. A Weiss‐constant θp = –12(1) K indicates weak antiferromagnetic coupling. No magnetic ordering was detected above 2 K.  相似文献   

18.
NbOI3 was obtained from a reaction of Nb2O5, Nb, and I2. Single crystals free from disorder were a by‐product from a reaction with additional CsI. The monoclinic crystal structure (C2, a = 14.624(3) Å, b = 3.9905(8) Å, c = 12.602(3) Å, β = 120.4(3)°, Z = 4, R1(F) = 0.0368, wR2(F2) = 0.0804) represents a new structure type which is built up by distorted octahedral NbI4O2 with unequal O‐atoms in trans‐position. The octahedra are linked to dimers by a common edge of iodine atoms and to double chains by the apical oxygen atoms. A non‐centrosymmetric structure results because the short Nb–O distances point to the same direction and the polar double chains are parallel. The crystal structure of NbOBr3 (NbOCl3‐type, , a = 11.635(6) Å, c = 3.953(2) Å, R1(F) = 0.082, wR2(F2) = 0.174) shows the same polar double chains but the dimeric units Nb2Br6O2 are orthogonal.  相似文献   

19.
Barium tetrametaphosphate hydrate Ba2(P4O12)∙3.5H2O was synthesized as a single‐phase crystalline powder starting from an aqueous solution of barium hydroxide and phosphorus pentoxide at 300 K. Ba2(P4O12)∙3.5H2O crystallizes in a new structure type in which the Ba2+ ions form a distorted hexagonal diamond‐like arrangement with the (P4O12)4– anions in the trigonal prismatic voids (Ba2(P4O12)∙3.5H2O, C2/c, Z = 4, a = 777.3(2), b = 1297.6(2), c = 1346.1(3) pm, b = 95.38(2)°, wR2 = 0.071, R1 = 0.018, 1180 reflections, 118 parameters). The vibrational spectra of Ba2(P4O12)∙3.5H2O and its thermal behavior up to 720 K are also reported.  相似文献   

20.
A polyoxoniobate, [Cu(en)2]4{[Nb6O19H2]K(H2O)5}2 ? (H2en) ? 17H2O (en = ethylenediamine) (1), has been synthesized and characterized by elemental analysis, IR, XPS, TGA, and single-crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system, space group P 1, with a = 12.3533(16) Å, b = 12.7188(16) Å, c = 29.626(4) Å, α = 93.235(2)°, β = 96.094(1)°, γ = 106.098(2)°, V = 4429.0(10) Å3, Z = 2. The polyoxoanion is composed of a Lindqvist-type [Nb6O19H2]6? dimer bi-bridged via two K+. K+ is 10-coordinate with 10 oxygens, three from one [Nb6O19H2]6?, one from a terminal oxygen of another [Nb6O19H2]6? moiety, and the other six from water molecule. Adjacent dimeric polyoxoanions are linked to form an infinite 1-D chain via O–H ··· O hydrogen-bonding interactions which exist between the two water trimers and the dimeric polyoxoanions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号