首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

2.
Preparation and Spectroscopical Characterization of Di(acido)phthalocyaninatorhodates(III) Triethylendiaminorhodiumiodide reacts quickly and completely with boiling phthalodinitrile precipitating ?rhodiumphthalocyanine”?, which is purified and dissolved in alkaline media as di(hydroxo)phthalocyaninatorhodate(III). Acidification in the presence of halides or pseudohalides yields less soluble acidophthalocyaninatorhodium reacting with tetra-n-butyl-ammonium(pseudo)halide to give (blue)green tetra-n-butyl-ammoniumdi(acido)phthalocyaninatorhodate(III), (nBu4N)[Rh(X)2Pc2?] (X = Cl, Br, I, N3, CN, NCO, SCN, SeCN). The asym. Rh? X-stretching vibration (vas(RhX)) is observed in the f.i.r. at 290 (X = Cl), 233 (Br), 205 (I), 366 (N3), 347 (CN), 351 (NCO), 257 (SCN) and 214 cm?1 (SeCN). vs(RhI) is the only sym. Rh? X-stretching vibration excited at 131 cm?1 in the Raman spectrum. The m.i.r. and resonance Raman spectra are typical for hexacoordinated phthalocyaninatometalates(III). The influence of the axial ligands is very small. The frequency of the stretching vibrations of the pseudohalo-ligands are as expected (in the case of the ambident ligands the bonding atom is named first): vas(NN) at 2006 and vs(NN) at 1270 cm?1 (N3); vas(CN) at 2126 (CN), 2153 (NCO), 2110 (SCN) and 2116 cm?1 (SeCN). The characteristic π–π*-transitions of the Pc2?-ligand dominate the UV-vis spectra. The splitting of the Q and N region is discussed and the weak absorbance at ca. 22 kK is assigned to a n–π*-transition.  相似文献   

3.
Low Spin Manganese Phthalocyanines: Preparation, Properties and Electronic Raman Spectrum of Di(cyano)phthalocyaninatomanganate(III) and -(II) . Iodophthalocyaninatomanganese(III) reacts with cyanide in acetone to yield di(cyano)phthalocyaninatomanganate(II), in dichloromethane, however di(cyano)phthalocyaninatomanganate(III) is formed. Both complexes are isolated as (n-Bu4N)-salts. In the cyclovoltammogram the redox couple MnII/MnIII is attributed to E1/2 = - 0.22 V and the first ringoxidation Pc(2 -)/Pc(1 -) to E1/2 = 0.75 V. The paramagnetic salts have magnetic moments (μeff = 2.11 resp. 2.95 B.M.) typical for the low spin ground state of MnII resp. MnIII (S = 1/2 resp. 1). The uv-vis-nir spectra are discussed. Comparison with the dicyano-complexes of CrIII, FeII/III and CoIII indicates that the multiple “extra bands” between 4 and 23 kK should be assigned to spin allowed trip-multiplets. The vibrational spectra are discussed. νas(Mn? C)(a2u) is found at 350 cm?1, νas(C? N)(a2u; cyanide) at 2 092 (MnII) and 2 114 cm?1 (MnIII). The Raman spectra are dominated by resonance Raman(RR) effects. With variable-wavelength excitation polarized, depolarized and anomalously polarized vibrations assigned to phthalocyanine skeletal modes are selectively RR-enhanced for the MnII complex. Intensive lines between 1 650 and 3 300 cm?1 are due to combinations and overtones of the a2g vibrations at 1 492 and 1 602 cm?1. In the 10 K Raman spectrum of (n-Bu4N)[Mn(CN)2Pc(2 -)] intraconfigurational transitions Γ1 → Γ4 and Γ1 → Γ3, Γ5 resulting from the splitting of the 3T1g ground state of MnIII (Oh symmetry) by spin-orbit coupling are observed as anomalously polarized and depolarized lines at 172 and 287 cm?1.  相似文献   

4.
High Spin Manganese(II) Phthalocyanines: Preparation and Spectroscopical Properties of Acidophthalocyaninatomanganate(II) Acidophthalocyaninatomanaganese(III) is reduced by boranate, thioacetate or hydrogensulfide to yield acidophthalo-cyaninatomanganate(II) ([Mn(X)Pc2?]?; X = Cl, Br, NCO, NCS) being isolated as tetra(n-butyl)ammonium salt. In the cyclovoltammogram of [Mn(NCO)Pc2?]? the halv-wave potential for the redoxcouple MnII/MnIII is at ?0.13 V, that of the first ring reduction at ?0.99 V. The magnetic moments are indicative of high-spin 6A1 ground states: μMn = 5.84 (NCO), 5.78(Cl), 5.65 (Br), 5.68 μB (NCS). A Curie-like temperature dependence of μMn is observed in the region 300–30 K. Below 30 K an increase in μMn occurs due to weak intermolecular ferromagnetic coupling. The ESR spectra confirm the S = 5/2 ground state with a strong g = 6 resonance observed (AMn = 80 G) as expected for an axially distorted ligand-field. Besides the typical π-π* transitions of the Pc2?-ligand several weak bands are observed in the Uv-vis-n.i.r. spectra at ca. 7.5, 9.1, 14.0 and 19.0 kK that are assigned to trip-multiplet transitions. In resonance with the band at 19.0 kK the Mn? X stretching vibration (v(MnX)) is resonance Raman enhanced: X = NCO: 319, Cl: 286, SCN: 238, Br: 202 cm?1. These vibrational frequencies are confirmed by the f.i.r. spectra. In the case of the thiocyanato-complex probably both forms of bonding of the ambident NCS-ligand are present (v(Mn? NCS): 274 cm?1). The frequencies of the vibrations of the inner (CN)8 ring are reduced by up to 20 cm?1 as compared with those of low spin MnII phthalocyanines.  相似文献   

5.
Osmium(II) Phthalocyanines: Preparation and Properties of Di(acido)phthalocyaninatoosmates(II) “H[Os(X)2Pc2?]” (X = Br, Cl) reacts in basic medium or in the melt with (nBu4N)X forming less stable, diamagnetic, darkgreen (nBu4N)2[Os(X)2Pc2?]. Similar dicyano and diimidazolido(Im) complexes are formed by the reaction of “H[Os(Cl)2Pc2?]” with excess ligand in the presence of [BH4]?. The cyclic voltammograms show up to three quasireversible redoxprocesses: E1/2(I) = 0.13 V (X = CN), ?0.03 V (Im), ?0.13 V (Br) resp. ?0.18 V (Cl) is metal directed (OsII/III), E1/2(II) = 0.69 V (Cl), 0.71 V (Br), 0.83 V (CN), 1.02 V (Im) is ligand directed (Pc2?/?) and E1/2(III) = 1.17 V (Cl) resp. 1.23 V (Br) is again metal directed (OsIII/IV). Between the typical “B” (~16.2 kK) and “Q” (~29.4 kK), “N regions” (~34.1 kK) up to seven strong “extra bands” of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. Within the row CN > Im > Br > Cl, most of the bands are shifted slightly, the “extra bands” considerably more to lower energy in correlation with E1/2(I). The vibrational spectra are typical for the Pc2? ligand with D4h symmetry. M.i.r. bands at 514, 909, 1 173 and 1 331 cm?1 are specific for hexa-coordinated low spin OsII phthalocyanines. In the resonance Raman (r.r.) spectra polarized, depolarized or anomalously polarized deformation and stretching vibrations of the Pc2? ligand will be selectively enhanced, if the excitation frequency coincides with “extra bands”. With excitation at ~19.5 kK the intensity of the symmetrical Os? X stretching vibration at 295 cm?1 (X = Cl), 252 cm?1 (X = Im) and 181 cm?1 (X = Br) is r.r. enhanced, too. The asymmetrical Os? X stretching vibration is observed in the f.i.r. spectrum at 345 cm?1 (X = CN), 274 cm?1 (X = Cl), 261 cm?1 (X = Im) and 200 cm?1 (X = Br).  相似文献   

6.
Phthalocyanines of Cobalt and Rhodium with O, S, and Se Donor Ligands Di(phenolato)-, -(benzenethiolato)- and -(benzeneselenonato)phthalocyaninatocobaltate(III) and -rhodate(III) are prepared by the reaction of di(hydroxo)phthalocyaninatometalate with phenol resp. benzenethiol or benzeneselenol and isolated as poorly soluble tetra(n-butyl)ammonium salts of the formula (nBu4N)[M(EPh)2Pc2?] (M = Co, Rh; E = O, S, Se). In the Uv-vis spectra π–π* transitions in the Pc2?-typical B, Q, N and L regions are observed. For the Rh-complexes with E = S, Se there is a further band at 18.0 kK due to excitonic π(Ph)–π(Pc) interactions. The (E→Rh-charge-transfer(CT)) transition is observed for E = Se at 26.0 kK, being obscured by the Q, N region for E = O, S. The strong, broad (E → Co? CT) transition (E = O, S, Se) absorbs at ~20.5 kK. A second CT-transition is detected within the Q, N region for E = S, Se. Molecular vibrations (in cm?1) are examined by m.i.r., f.i.r, FT-Raman and dispersive resonance-Raman(RR) spectra. The C? E stretching mode (v7a) of the axial EPh ligands is observed for E = O at 1256/1262, 1269 (Co, m.i.r./RR), 1246/1265 (Rh), for E = S at 1085 (Co, Rh; RR) and for E = Se at 1069 (Co, Rh; RR). The C? C? E deformation mode (v6a) is assigned for E = O at 554/557 (Co, RR), 568 (Rh, RR) and for E = S at 420 (Co, Rh; RR). The following vibrational modes of the trans-ME2N4 skeleton are assigned: vs(ME) for Co: 381 (O)/271 (S)/139 (Se); for Rh: 408/297/156; vas(ME) for Co: 352/277/235; for Rh: 391/278/225; vas(MN) absorbs nearly independent of M and E at ~325 (f.i.r.) M? E? C deformation modes are observed between 246 and 200 (f.i.r.) resp. 217 and 186 (RR).  相似文献   

7.
Preparation and Spectroscopical Properties of Nitridophthalocyaninatorhenium(V) Nitridophthalocyaninatorhenium(V) ([ReNPc2?]) is prepared by the reaction of dirheniumheptoxide with ammoniumiodide in molten 1,2-dicyano-benzene. The diamagnetic complex is chemically und thermically extremely stable. In the Uv-vis spectra the typical π-π*-transitions of the Pc2? ligand are observed. Extra bands in the solid state spectrum are due to strong excitonic coupling of ca. 2.8 kK. In the resonance Raman spectra the intensity of the Re≡N stretching vibration (v(Re≡N)) at 969 cm?1 is selectively enhanced by laser excitations above 19.0 kK. v(Re≡N) is a dominant m.i.r. absorption at 976 cm?1.  相似文献   

8.
Ruthenium(II) Phthalocyanines: Preparation and Properties of Di(halo)phthalocyaninatoruthenate(II) [Ru(Py)2Pc2?] reacts with molten (nBu4N)X forming stable, green (nBu4N)2[Ru(X)2Pc2?] (X = Cl, Br). The cyclovoltammogram shows a quasireversible redoxprocess for the metal oxidation at E1/2(I) = ?0.02 V (X = Cl) resp. 0.05 V (X = Br) and for the first ringoxidation at E1/2(II) = 0.70 V. The typical π-π*-transitions (B < Q < N) of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. With respect to RuIII phthalocyanines B is shifted significantly to higher, Q, N to lower energy. The strong extra-band at 24.2 kK is diagnostic for these RuII phthalocyanines. The vibrational spectra are typical for the Pc2? ligand with D4h symmetry, too, and bands at 513, 909, 1 171 und 1 329 cm?1 in the m.i.r. spectrum are specific for hexa-coordinated low spin RuII. In the Raman spectrum with excitation at ~480 nm the intensity of the totally symmetrical Ru? X stretching vibration at 266 cm?1 (X = Cl) resp. 168 cm?1 (X = Br) together with a progression of up to three overtones is selectively resonance Raman enhanced. The asymmetrical Ru? X stretching vibration is observed in the f.i.r. spectrum at 272 cm?1 (X = Cl) resp. 215 cm?1 (X = Br).  相似文献   

9.
Synthesis and Spectroscopical Properties of Di(phthalocyaninato(1?))lanthanidepolybromide; Crystal Structure of α-Di(phthalocyaninato)samariumpolybromide, α-[Sm(Pc)2]Br1.45 and α-Di(phthalocyaninato)samariumperchlorate, α-[Sm(Pc)2](ClO4)0.63 Bronze-coloured di(phthalocyaninato)lanthanidepolybromide, [Ln(Pc?)2]Bry (Ln = La…(? Ce, Pm)…Lu; y > 1.5) is prepared by oxidation of (nBu4N)[Ln(Pc2?)2] with bromine in excess. The UV-VIS-NIR spectra show the typical B and Q1 bands of the Pc? ligand at ~ 14 kK and ~ 20 kK. For the [Ln(Pc?)2]+ cation a NIR(D) band between 9,14 kK (La) and 11,50 kK (Lu) is characteristic for dimeric cofacial Pc? radicals. Within the row La…Lu, there is a linear relationship of the hypsochromic shift of the strong bands and the LnIII radius. In the case of La? Nd the D band shifts successively with longer time of bromination to ~ 3 kK as a result of increasing electron delocalisation. Characteristic vibrational bands are at ~ 1350/1450 cm?1 (IR) and ~ 560/1120/1170/1600 cm?1 (RR). In the FT-Raman spectra the totally symmetric Ln? N stretching vibration between 141 cm?1 (La) and 172 cm?1 (Lu) is selectively enhanced. As shown by α-[Sm(Pc)2]Br1,45 and α-[Sm(Pc)2](ClO4)0,63 only partially ringoxidized complexes are obtained by the anodic oxidation. Both crystallize in the tetragonal space group P4/nnc. The [Sm(Pc)2] molecular building block contains two nearly planar staggered (~41°) Pc rings packed in columns parallel along [001] leading to the quasi-one-dimensional structure. There is a statistical disorder of the SmIII and the ClO4? resp. Br?/Br3? ions over two incompletely filled crystallographic positions for the cation resp. anion. This results in a partial oxidation of the Pc ligand, which in the picture of localized valence states for α-[Sm(Pc)2](ClO4)0,63 corresponds to [SmPc?Pc2?] · 2[Sm(Pc?)2](ClO4). Accepting the same valence state for [Sm(Pc)2]Br1,45 five positive charges are compensated by two Br? and three Br3?. The spectroscopic differences of the partially and fully oxidized complexes are discussed.  相似文献   

10.
Preparation and Properties of Tetragonal α-Di(phthalocyaninato(1?))praseodymium(III)-polyhalides; Crystal Structure of α-[Pr(Pc?)2]Br1.5 Brown red di(phthalocyaninato(1?))-praseodym(III)-polyhalides [Pr(Pc?)2]Xy (X = Br, I) of variable composition (1 ≤ y ≤ 2.5) are formed by (electro)chemical oxidation of [Pr(Pc2?)2]?. The thermical decomposition of these polyhalides at 250°C yields partially oxidized, green α-[PrPc?Pc2?]. Due to strong spin–spin coupling of the phthalocyanin-π-radicals only PrIII contributes to the magnetic moment of ca. 3.0 B.M. for all complexes. Green metallic prisms of [Pr(Pc?)2]Br1.5 crystallize in the tetragonal α-modification: space group P4/nnc with a = 19.634(5) Å, c = 6.485(2) Å; Z = 2. In the sandwich complex PrIII is eightfold coordinated by the isoindoline N-atoms of the two staggered (41°), nearly planar Pc?- ligands. The quasi-onedimensional character of the structure along [001] is due to the infinite columns of Pc? ligands. The superperiod along [001] is a consequence of the distribution of the Pr atoms onto two incompletely filled crystallographic positions at a distance of c/2 and the disordered chains of the bromine atoms extending in the same direction. Powder diffractograms of Pr(Pc )2Br2, [Pr(Pc?)2]I2 und [PrPc Pc2?] confirm the tetragonal α-modification of these complexes, too. The content of tribromide correlates with the population of the Pr(2)-site. In the UV-VIS-NTR absorption spectrum of a thin film of Pr(Pc )2Br, the intense bands at 13.9 and 19.5 kK are assigned to the B and Q transition, respectively. The D band at 9. kK is characteristic for isolated dimeric Pc?-π-radicals. Due to increasing electron delocalisation as a result of the growing columns the D band is shifted to lower energy appearing successively at 6.05 and 3.3 kK. The mir and resonance Raman (RR) spectra of α-[Pr(Pr?)2]Xy, (X = Br, I) show the well known diagnostic bands for Pc?-π-radicals. Thc RR spectrum of the polyiodide is dominated by the overtone progression of the totally symmetric (I-I) stretching vibration of the triiodide at 108cm?1. The FT-Raman spectra are also marked by the totally symmetric stretching vibration of the polyhalides (Br3 : 145cm 1; 13?:105cm?1; I5? 151 cm?1).  相似文献   

11.
OsII Phthalocyaninates(2?): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato-(2?)osmate(II) Soluble, blue tetra(n-butyl)ammonium (halo)(carbonyl)phthalocyaninato(2?)osmate(II), (nBu4N)[Os(X)(CO)Pc2?] (X = Cl, Br, I) is obtained by the reaction of [Os(THF)(CO)Pc2?] (THF: tetrahydrofurane) with (nBu4N)X in THF. In the cyclovoltammograms there are three reversible electrode processes at ?1.21 ± 0.01, 0.18 ± 0.04 and 0.65 ± 0.01 V assigned to the three redox pairs Pc2?/Pc3?, OsII/OsIII and Pc2?/Pc3?. In the electronic absorption spectra only the intense B and Q regions are observed at ~ 15800 resp. 27500, 33000 cm?1. The infrared and resonance Raman spectra closely resemble those of other phthalocyaninates(2?) of low valent osmium. In the infrared spectrum v(C? O) is detected at 1896 ± 4 cm?1 and v(Os? X) at 260 (X = Cl), 175 (X = Br) or 143 cm?1 (X = I).  相似文献   

12.
Synthesis and Spectroscopical Properties of the Mixed-Valent Di(phthalocyaninato)lanthanides(III) Green di(phthalocyaninato)lanthanide(III), [M(Pc)2] (M = rare earth metal ion: La‥(-Ce, Pm)‥Lu) is prepared by anodic oxidation of (nBu4N)[M(Pc2?)2] dissolved in CH2Cl2/(nBu4N)ClO4. The UV-Vis-NIR spectra show intense π-π* transitions at ? 15000 cm?1 and 31000 cm?1, typical for Pc2? ligands. Bands at ? 11000 cm?1 and 22000 cm?1 indicate the equal presence of a Pc? π-radical. The metal dependent NIR band between 4000 and 9000 cm?1 is characteristic for these mixed-valent complexes and assigned to an intervalence transition (b1 → a2; D4d symmetry). Most bands are shifted linearly with the MIII radius. In the IR and resonance Raman (r.r.) spectra the typical vibrations of the Pc? π-radical are dominant. These are essentially metal independent excepting the C? C and C? N vibrations of the inner (CN)8 ring. The sym. M? N stretching vibration between 141 (La) and 168 cm?1 (Lu) is selectively r.r.-enhanced when excited with 1064 nm.  相似文献   

13.
Dimeric Low-Spin Iron(III) Phthalocyanines: Synthesis and Properties of Ferromagnetically Coupled μ-Oxodi(acidophthalocyaninatoferrates(III)) μ-Oxodi(phthalocyaninatoiron(III)) ([(FePc2?)2O]) dissolved in pyridine reacts with different Tetra(n-butyl)ammonium salts yielding partly solvated Di(tetra(n-butyl)ammonium)-μ-oxodi(acidophthalocyaninatoferrates(III)) ((nBu4N)2[(Fe(X)Pc2?)2O]; X? = CN?, Im?, NCO?, NCS?, NO2?). The uv-vis. spectra show the typical B, Q, N and L regions of the Pc2? ligand scarcely influenced by the axial ligands X. In comparison with [(FePc2?)2O] mainly the B region is hypsochromically shifted due to strong excitonic coupling (> 3 kK). Two regions of weak absorbance at ca. 7.6–8.7 and 11.4–13.0 kK are assigned to trip-doublet transitions. The m.i.r. and resonance Raman spectra are dominated by the fundamental vibrations of the Pc2? ligand being characteristic for hexa-coordinated low-spin FeIII phthalocyanines. Internal vibrations of the ambident axial ligands X are in accordance with the proposed Fe? X bond. The i.r. active asym. (Fe? O? Fe) stretching vibration is observed in the region 631–690 cm?1. Fe? X stretching vibrations are only present in the f.i.r. spectra. The magnetic properties and Mößbauer spectra are interpreted in terms of an electronic model which assumes that a S′ = 1 ground state arises from strong ferromagnetic coupling of the low-spin FeIII centres. Both spin-Hamiltonian and ligand-field models have been employed to fit the variable temperature susceptibility data. These low-spin μ-oxo FeIII dimers are rare compared to the many known examples of coupled high-spin species including the parent, [(FePc2?)2O].  相似文献   

14.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

15.
Abstract

The triply chloro-bridged binuclear complex [Ru2Cl5(CO)(PPh3)3]·CH2Cl2, (PPh3 = triphenylphosphine), Mr = 1279.23, prepared from the precursor compound [RuCl3(PPh3)2DMA]·DMA (DMA = N,N′-dimethylacetamide) and crystallizes in the monoclinic space group P21/c. The structure was solved from 6994 independent reflections for which I > 3σ(I) by Patterson and difference Fourier techniques and refined to a final R = 0.042. The complex is formed by two Ru atoms bridged through three chloride anions. One Ru atom is further coordinated to two non-bridging Cl atoms and a triphenylphosphine ligand, whereas the other is bonded to two PPh3 ligands and a carbon monoxide molecule. The presence of RuIII was confirmed by EPR data. The absence of an intervalence charge-transfer transition (IT) in the near-infrared spectrum suggests that the binuclear complex is of a localized valence type. The IR spectrum shows a νCO band at 1964cm? and νRu-Cl bands at 328, 280 cm?1, corresponding to chlorides at terminal positions and 250, 225 cm?1 for the bridged ones. Two redox processes, RuII/RuII (E1/2 = -0.29 V) ← RuII/RuIII ← (E1/2 = 1.19 V) RuIII/RuIII, were observed by cyclic voltammetry.  相似文献   

16.
Monomeric and Dimeric Chromium(III) Phthalocyanines: Synthesis and Properties of Hydroxopyridinophthalocyaninatochromium(III) and μ-Oxodi(pyridinophthalocyaninatochromium(III)) Heating of ?[Cr(OH)Pc2?]”? in pyridine (Py) gives the paramagnetic (T = 273 K) complexes [Cr(OH)(Py)Pc2?] (μCr = 3.84 μB) and [(Cr(Py)Pc2?)2O] (μCr = 1.24 μB) by consecutive substitution and condensation reactions. The UV-VIS spectra are characterized by the typical B, Q, and N regions of the Pc2? ligand being shifted hypsochromically for the dimer with respect to the monomer due to excitonic coupling (1.5 kK). Regions of weak absorbance between 8 and 13 resp. 19 kK are assigned to trip-quartet transitions for both complexes. A weak band at 870 cm?1 in the FIR/MIR spectra is assigned to vas(Cr? O? Cr). In the resonance Raman(RR) spectra v(Cr? O) at 514 cm?1 resp. vs(Cr? O? Cr) at 426 cm?1 is selectively enhanced. Further strong RR-lines of the μ-Oxo dimer at 110 and 631 cm?1 are assigned to a (Py? Cr? O)- resp. internal pyridine deformation of a1g symmetry. An assignment as 2vas(Cr? O? Cr) is proposed for the remarkable RR line at 1740 cm?1.  相似文献   

17.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   

18.
Spectroscopical Properties of Di(phthalocyaninato)metalates(III) of the Rare Earth Elements. Part 1: Electronic Absorption and Vibrational Spectra Di(phthalocyaninato)metalates(III) of the rare earth elements were prepared by the reaction of partially dehydrated lanthanide acetate with molten phthalodinitrile in the presence of potassium methylate and isolated as complex salts with different tetraalkylammonium cations, especially tetra(n-butyl)- and tri(n-dodecyl)n-octylammonium and di((triphenyl)phosphine)-iminium (abbrev.: (nBu4N), TDOA, PNP). Besides the typical strong π-π* transitions in the B, Q, N regions of the Pc2? ligands low intensity bands at ca. 10, 11 and 19 kK are observed in the UV-Vis-NIR spectra and assigned to singulet–triplet transitions. In going from La to Lu the B band splits continously due to excitonic coupling extending from 0,71 (La) to 1,92 kK (Lu). The FIR-MIR and resonance Raman spectra are nearly metal independent with the exception of some hypsochromically shifted bands due to C? C and C? N stretching and deformation vibrations of the inner (CN)8 ring. Only the FIR band at 157 cm?1 (La) assigned to the asym. Ln? N stretching vibration is shifted to lower energy.  相似文献   

19.
Proton‐coupled electron‐transfer oxidation of a RuII?OH2 complex, having an N‐heterocyclic carbene ligand, gives a RuIII?O. species, which has an electronically equivalent structure of the RuIV=O species, in an acidic aqueous solution. The RuIII?O. complex was characterized by spectroscopic methods and DFT calculations. The oxidation state of the Ru center was shown to be close to +3; the Ru?O bond showed a lower‐energy Raman scattering at 732 cm?1 and the Ru?O bond length was estimated to be 1.77(1) Å. The RuIII?O. complex exhibits high reactivity in substrate oxidation under catalytic conditions; particularly, benzaldehyde and the derivatives are oxidized to the corresponding benzoic acid through C?H abstraction from the formyl group by the RuIII?O. complex bearing a strong radical character as the active species.  相似文献   

20.
Lattice Vibration Spectra. LXIII. Be(IO3)2 · 4 H2O, a Hydrate with Unusual Bonding and Lattice Dynamics The IR and Raman spectra (4000–50 cm?1) of Be(IO3)2 · 4 H2O and of deuterated specimens are recorded at 90 and 300 K and discussed in terms of the unusual relations of the masses of the atoms involved and the large polarization power of the beryllium ions. Thus, the translatory modes of the Be2+ ions (BeO4 skeleton vibrations), the librations of the H2O molecules, and the internal vibrations of the IO3? ions in the spectral regions of 300–400 and 600–1000 cm?1 couple and coincide producing unusual vH/vD isotopic ratios of partly < 1. The H-bond donor strengths of the water molecules is so much increased (due to the very large ionic potential of Be2+ ions, viz. 49 e nm?1) (synergetic effect) that the H-bonds formed are similar in strength as those in hydrates of hydroxides with the very strong H-bond acceptor group OH? (vOD of matrix isolated HDO molecules 2 074 and 2 244 (H2O I) and 2 206 and 2 349 cm?1 (H2O II))  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号