首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The growing interest to examine the hydroelastic dynamics and stabilities of lightweight and flexible materials requires robust and accurate fluid–structure interaction(FSI)models. Classically, partitioned fluid and structure solvers are easier to implement compared to monolithic methods;however, partitioned FSI models are vulnerable to numerical("virtual added mass") instabilities for cases when the solid to fluid density ratio is low and if the flow is incompressible.As a partitioned method, the loosely hybrid coupled(LHC)method, which was introduced and validated in Young et al.(Acta Mech. Sin. 28:1030–1041, 2012), has been successfully used to efficiently and stably model lightweight and flexible structures. The LHC method achieves its numerical stability by, in addition to the viscous fluid forces, embedding potential flow approximations of the fluid induced forces to transform the partitioned FSI model into a semi-implicit scheme. The objective of this work is to derive and validate the numerical stability boundary of the LHC. The results show that the stability boundary of the LHC is much wider than traditional loosely coupled methods for a variety of numerical integration schemes. The results also show that inclusion of an estimate of the fluid inertial forces is the most critical to ensure the numerical stability when solving for fluid–structure interaction problems involving cases with a solid to fluid-added mass ratio less than one.  相似文献   

4.
A finite element model is developed based on the penalty formulation to study incompressible laminar flows. The study includes a number of new quadrilateral and triangular elements for 2-dimensional flows and a number of new hexahedral and tetrahedral elements for 3-dimensional flows. All elements employ continuous velocity approximations and discontinuous pressure approximations respecting the LBB condition of numerical instability. An incremental Newton–Raphson method coupled with the Broyden method is used to solve the non-linear equations. Several numerical examples (colliding flow, cavity flow, etc.) are presented to assess the efficiency of elements.  相似文献   

5.
In this paper, we present numerical approximations of optimal control of unsteady flow problems using sequential quadratic programming method (SQP) and time domain decomposition. The SQP method is considered superior due to its fast convergence and its ability to take advantage of existing numerical techniques for fluid flow problems. It iteratively solves a sequence of linear quadratic optimal control problems converging to the solution of the non‐linear optimal control problem. The solution to the linear quadratic problem is characterized by the Karush–Kuhn–Tucker (KKT) optimality system which in the present context is a formidable system to solve. As a remedy various time domain decompositions, inexact SQP implementations and block iterative methods to solve the KKT systems are examined. Numerical results are presented showing the efficiency and feasibility of the algorithms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the accuracy of a high-order discontinuous Galerkin discretization for the coarse resolution simulation of turbulent flow. We show that a low-order approximation exhibits unacceptable numerical discretization errors, whereas a naive application of high-order discretizations in those situations is often unstable due to aliasing. Thus, for high-order simulations of underresolved turbulence, proper stabilization is necessary for a successful computation. Two different mechanisms are chosen, and their impact on the accuracy of underresolved high-order computations of turbulent flows is investigated. Results of these approximations for the Taylor–Green Vortex problem are compared to direct numerical simulation results from literature. Our findings show that the superior discretization properties of high-order approximations are retained even for these coarsely resolved computations.  相似文献   

7.
In the present paper the integration of angular velocities is studied. Both exact and approximate results are expressed in terms of rotational quaternions. Analytical solution is found using the theory of analytic differential systems. This exact solution serves as a suitable basis for derivation of various numerical methods. Approximative approaches based on Taylor series and several maps from pure to unit quaternions are presented. A special care is taken in describing the higher order approximations. The computational performance and comparison of numerical methods is demonstrated by examples.  相似文献   

8.
Spacecraft motion around artificial equilibrium points   总被引:1,自引:0,他引:1  
The main goal of this paper is to describe the motion of a spacecraft around an artificial equilibrium point in the circular restricted three-body problem. The spacecraft is under the gravitational influence of the Sun and the Earth, as primary and secondary bodies, subjected to the force due to the solar radiation pressure and some extra perturbations. Analytical solutions for the equations of motion of the spacecraft are found using several methods and for different extra perturbations. These solutions are strictly valid at the artificial equilibrium point, but they are used as approximations to describe the motion around this artificial equilibrium point. As an application of the method, the perturbation due to the gravitational influence of Jupiter and Venus is added to a spacecraft located at a chosen artificial equilibrium point, near the \(L_3\) Lagrangian point of the Sun–Earth system. The system is propagated starting from this point using analytical and numerical solutions. Comparisons between analytical–analytical and analytical–numerical solutions for several kinds of perturbations are made to guide the choice of the best analytical solution, with the best accuracy.  相似文献   

9.
We propose a new method for numerical simulation of gas dynamics based on kinetic theory. The method is based on a cumulant-expansion-ansatz for the phase space density, which leads to a set of quasi-linear, hyperbolic partial differential equations. The method is compared to the moment method of Grad. Both methods agree for low-order approximations but the method proposed shows additional non-linear terms for high order approximations. Boundary conditions on the cumulants for an ideally reflecting and an ideally rough boundary surface are derived from conditions on the phase space density. A Lax-method is used for numerical analysis of a 2d-BGK fluid, which results in an easy-to-implement algorithm well suited for implementation on massivly parallel computers. The results are found to agree qualitatively with predictions from moment theories. Received August 10, 2000  相似文献   

10.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Decomposition methods based on split operators are proposed for numerical integration of the time‐domain Maxwell's equations for the first time. The methods are obtained by splitting the Hamiltonian function of Maxwell's equations into two analytically computable exponential sub‐propagators in the time direction based on different order decomposition methods, and then the equations are evaluated in the spatial direction by the staggered fourth‐order finite‐difference approximations. The stability and numerical dispersion analysis for different order decomposition methods are also presented. The theoretical predictions are confirmed by our numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The widely used locally adaptive Cartesian grid methods involve a series of abruptly refined interfaces. In this paper we consider the influence of the refined interfaces on the steady state errors for second‐order three‐point difference approximations of flow equations. Since the various characteristic components of the Euler equations should behave similarly on such grids with regard to refinement‐induced errors, it is sufficient enough to conduct the analysis on a scalar model problem. The error we consider is a global error, different to local truncation error, and reflects the interaction between multiple interfaces. The steady state error will be compared to the errors on smooth refinement grids and on uniform grids. The conclusion seems to support the numerical findings of Yamaleev and Carpenter (J. Comput. Phys. 2002; 181: 280–316) that refinement does not necessarily reduce the numerical error. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
15.
弹性力学的一种边界无单元法   总被引:24,自引:7,他引:24  
程玉民  陈美娟 《力学学报》2003,35(2):181-186
首先对移动最小二乘副近法进行了研究,针对其容易形成病态方程的缺点,提出了以带权的正交函数作为基函数的方法-改进的移动最小二乘副近法,改进的移动最小二乘逼近法比原方法计算量小,精度高,且不会形成病态方程组,然后,将弹性力学的边界积分方程方法与改进的移动最小二乘逼近法结合,提出了弹性力学的一种边界无单元法,这种边界无单元法法是边界积分方程的无网格方法,与原有的边界积分方程的无网格方法相比,该方法直接采用节点变量的真实解为基本未知量,是边界积分方程无网格方法的直接解法,更容易引入界条件,且具有更高的精度,最后给出了弹性力学的边界无单元法的数值算例,并与原有的边界积分方程的无网格方法进行了较为详细的比较和讨论。  相似文献   

16.
This paper presents a review of recent advancements in computational methodology for aeroacoustics problems. High-order finite difference methods for computation of linear and nonlinear acoustic waves are the primary focus of the review. Schemes for numerical simulation of linear waves include explicit optimized and DRP finite-difference operators, compact schemes, wavenumber extended upwind schemes and leapfrog-like algorithms. Both spatial approximations and time-integration techniques, which include low-dissipation low-dispersion Adams-Bashforth and Runge-Kutta (RK) methods, are examined. Wave propagation properties are analysed in the wavenumber and frequency space. Different approaches to eliminate short-wave spurious numerical waves are also reviewed. Methods for simulating nonlinear acoustic phenomena include essentially non-oscillatory (ENO) schemes, numerical adaptive filtering for high-order explicit and compact finite-difference operators, MacCormack and adaptive compact nonlinear algorithms. A literature survey of other CAA methods is provided in the introductory part.  相似文献   

17.
The rotating flow inside an enclosed cylindrical rotor–stator cavity is studied. Within a certain range of governing parameters, vortex breakdown phenomenon can arise along the axis. Very recent papers exhibiting some particular three-dimensional effects, have concentrated new interest on this topic. The study is carried out by a numerical resolution of the 3D Navier–Stokes equations, based on spectral approximations. Three-dimensional behaviours of the flow and in the structure of the associated vortex breakdown are numerically exhibited for the first time in a cavity of large axial aspect ratio.  相似文献   

18.
通过微分求积建立求解变系数空间分数阶扩散方程的一种有效直接数值方法。基于Reciprocal Multiquadric和Thin-Plate Spline径向基函数推导两种逼近分数阶导数的微分求积公式,将所考虑的模型问题转化成易求解的常微分方程组,并采用Crank-Nicolson格式进行离散。给出5个数值算例,计算结果表明,只要径向基函数的形状参数选择恰当,本文方法在精度和效率上均优于一些现有算法。  相似文献   

19.
Discontinuous Galerkin (DG) finite element methods have salient features that are mainly highlighted by their locality, their easiness in balancing the flux and source term gradients and their component‐wise structure. In the light of this, this paper aims to provide insights into the well‐balancing property of a second‐order Runge–Kutta Discontinuous Galerkin (RKDG2) method. For this purpose, a Godunov‐type RKDG2 method is presented for solving the shallow water equations. The scheme is based on local DG linear approximations and does not entail any special treatment of the source terms in order to achieve well‐balanced numerical results. The performance of the present RKDG2 scheme in reproducing conserved solutions for both free surface and discharge over strongly irregular topography is demonstrated by applying to several hydraulic benchmarks. Meanwhile, the effects of different slope limiting procedures on the well‐balancing property are investigated and discussed. This work may provide useful guidelines for developing a well‐balanced RKDG2 numerical scheme for shallow water flow simulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we consider the numerical approximation of steady and unsteady generalized Newtonian fluid flows using divergence free finite elements generated by the Powell–Sabin–Heindl elements. We derive a priori and a posteriori finite element error estimates and prove convergence of the method of successive approximations for the steady flow case. A priori error estimates of unsteady flows are also considered. These results provide a theoretical foundation and supporting numerical studies are to be provided in Part II. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号