首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic characteristics of radical pairs produced in squalane and in cetane receiving high gamma-dose are extensively studied with the EPR technique at temperatures from 77°K up to 150°K. The spectra of the paired radicals occur at g=4 with a very low transition probability in contrast to that of isolated radicals which appear at g=2 A well-resolved hyperfine spectrum corresponding to the species (CH3CH2.CH2CH3) is observed in cetane. The isothermal decay rates of radical pairs in cetane below 100°K are significantly slow; however, the decay kinetics at 150°K is first order with rate constant=1.86 min?1. A relatively slower decay rate is obtained for isolated radicals suggesting that the decay mechanism of paired radicals is through geminate recombination. The relative inter-radical distance in radical pairs is known from a decay curve as a function of temperature. The yields of radical pairs are low in both matrices, only few percents of those of isolated radicals. The formation mechanisms of paired radicals with direct radiolytic bond scission process are discussed in connection with the experimental observations.  相似文献   

2.
The effects of drawing temperature on the physical and mechanical properties of poly(p-phenylene sulfide) have been studied. A melt-quenched film was drawn by solid-state coextrusion both below (75°C) and above (95 and 110°C) the glass transition temperature Tg (85°C) of PPS. The maximum extrusion draw ratio (EDRmax) increased from 3.4 to 5.6 with increasing extrusion temperature Te from 75 to 110°C. It was found that extrusion drawing just above the Tg of PPS (95°C) produced more stress-induced crystals. A high efficiency of draw in the amorphous region was achieved by extrusion at Te-75°C. The tensile modulus at EDRmax decreased from 5.1 to 3.5 GPa with increasing Te from 75 to 110°C. The low efficiency of draw for the samples extruded at 110°C is explained in terms of disentanglement and chain slippage during drawing due to a less effective network.  相似文献   

3.
Thermal instability is a loss of thermal control which liberates high amount of energy and pressure. An incident took place during drying of an intermediate having amino alcohol functional group in agitated nutsche filter dryer at plant scale. During our investigation using advanced reactive system screening tool (ARSST), thermal decomposition was observed. Onset temperature of decomposition (T o) is at 85 °C, adiabatic temperature rise due to decomposition (ΔT ad) is 215 °C, maximum temperature attained due to decomposition (T max) is 300 °C, maximum self-heat rate (dT/dt)max is 6,215 °C min?1, and maximum rate of pressure rise (dP/dt)max is 1,442 psi min?1 obtained from ARSST experiments. T D24 value is 75 °C which was estimated experimentally. The correlations of these results were utilized to identify the root cause of this incident and necessary control measures were taken accordingly.  相似文献   

4.
T-butylperoxy phenylcarbonate (BPPC) was prepared. Its decomposition rate constant in cumene is given by kd = 2.39 × 1015 exp(?17,300/T), where T is the absolute temperature. When BPPC decomposes to polymerize styrene at 100°C, it produces 12% phenoxy radical to total primary radicals. The phenoxy radical hardly adds to styrene and reacts the other primary radicals and polymer radical. Thus it retards the rate of polymerization.  相似文献   

5.
Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6–20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45–100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36–48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551–2562, 1998  相似文献   

6.
The factors controlling grain growth during the disorder‐to‐order transition in a polystyrene‐block‐polyisoprene copolymer melt were studied with time‐resolved depolarized light scattering. The ordered phase consisted of hexagonally packed polyisoprene cylinders, and the order–disorder‐transition temperature of the block copolymer (TODT) was 132 ± 1 °C. Our objective was to identify the temperature at which the grain growth rate was maximized (Tmax) and compare it with theoretical predictions. We conducted seeded grain growth experiments, which comprised two steps. In the first step, which lasted for 43 min, the sample was cooled from the disordered state to 124 °C. This resulted in the formation of a small number of ordered grains or seeds. This was followed by a second step in which the sample was heated to temperatures between 124 and 132 °C and the seeds grew with time. Our objective was to study grain growth at different temperatures starting from the same initial condition. The value of Tmax obtained experimentally was 128 °C. The theoretically predicted value of Tmax, based entirely on the rheological properties of the disordered sample and TODT, was also 128 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2231–2242, 2001  相似文献   

7.
Summary Cholesterol constitutes the major component of most gallstones. It was identified and determined in gallstones by thermal analysis technique (DSC and TG-DTA), mainly by the use of the melting temperature (Tonset=145°C and Tmax=149°C) and by DTG peak decomposition (Tmax=364°C). Cholesterol anhydrous (ChA), which showed endothermic polymorphic peak, Tmax=40°C, without mass loss, was differentiated from cholesterol monohydrate (ChH), which showed a broad endothermic peak, Tmax=59°C, attributed to loss of water of crystallization (theoretical 4.45%). Morphological studies of gallstones were performed by optical microscopy and scanning electron microscopy (SEM). The stones consisted of a pigmented core with a variably-sized irregular central cavity, surrounded by a radially arranged deposits of plate-like ChH. The outer part of the stones showed ChA crystal arborescences. X-ray microanalysis gave a typical spectrum rich in C and O, and in some instances the presence of P, which was attributed to the presence of phospholipids. CaCO3 was easily characterized by TG with the use of DTG decomposition peak at 674°C.  相似文献   

8.
The free radicals in p-polyphenylene and the formation of free radicals in this polymer upon pyrolysis in vacuum have been studied by means of electron spin resonance. For an unpyrolyzed series of polymer samples, a linear relationship was observed between free radical concentration and increasing carbon content. The free radicals observed in the unpyrolyzed samples did not react with NO. When samples of polyphenylene were pyrolyzed, additional free radicals were produced which did react with NO. The growth of free radical concentration upon pyrolysis was observed to be closely related to the production of volatile products from the polymer. In the temperature range 250–600°C, HCl was the principal volatile species produced. Two mechanisms were involved in HCl production: a process with an activation energy of 7.1 kcal/mole which led to the production of stable free radicals; and a process involving 75 kcal/mole which was unconnected with the production of free radicals. From 600 to 700°C, H2 was the principal volatile degradation product. The rate at which H2 was evolved showed a second-order dependence on phenyl units bearing two or three substituents; this process had an activation energy of 79 kcal/mole. Electron spin resonance spectra indicated that this process led to the production of free radicals, and infrared spectra showed that a highly crosslinked product resulted.  相似文献   

9.
Radical formation during mechanical degradation of solid poly(2,6-dimethyl-p-phenylene oxide) (PPO) was investigated by electron spin resonance (ESR). The ESR spectrum of PPO fractured at room temperature in air consisted of eight lines with a separation of about 5.5 gauss with g = 2.0043, indicating a small asymmetry. For PPO fractured in liquid nitrogen, a similar spectrum was observed at ?196°C in air or in vacuo. These spectra have been identified as belonging to a 2,6-dimethyl-substituted phenoxy radical and thus indicate the occurrence of main-chain rupture. The phenyl radical which was expected to be formed together with a 2,6-dimethyl-substituted phenoxy radical could not be detected, but at temperatures below ?46°C a small hump was observed at g = 2.034. By subtracting the spectrum observed after decay of this hump from the original one, the resulting curve was the characteristic asymmetric spectrum of a peroxy radical, which was presumably formed by the reaction between a phenyl radical and oxygen. The radical decay curve showed two stepwise-decaying regions; one located in the temperature region between about ?120°C and ?80°C where only a small number of radicals decayed, another located in the temperature region from about ?30°C to 100°C where almost all mechanically formed radicals decayed. The latter radical decay, which occurred considerably below the glass-transition temperature of PPO, was attributed to the molecular motions associated with the mechanical β* relaxation on the basis of the activation energy and the temperature region.  相似文献   

10.
The time-dependent birefringence has been measured simultaneously with the stress relaxation on quenched and annealed low-density polyethylene at various temperatures from 10 to 70°C. The strain-optical coefficient increases generally with increasing time, and approaches the equilibrium value, which depends upon the temperature. When the strain-optical coefficient at a fixed time is plotted against temperature, it first increases and then decreases after passing through a maximum at Tmax with increasing temperature. The higher the degree of crystallinity, the higher are the equilibrium values of the strain-optical coefficient and Tmax. The curves for strain-optical coefficient versus time and relaxation modulus versus time below Tmax can be superposed well by a horizontal shift along the abscissa. The optical shift factor obeys the original WLF equation, while the mechanical shift factor is much larger than the optical one. The molecular mechanisms corresponding to this dispersion of the strain-optical coefficient and viscoelastic αc absorption peak near Tmax are discussed.  相似文献   

11.
Brillouin scattering has been studied from amorphous bisphenol-A polycarbonate in the temperature interval 60–240°C. Both longitudinal and transverse Brillouin peaks are observed over the entire range. The behavior of both types of Brillouin splittings, Δωl and Δωt, in the region of the glass–rubber relaxation is typical of an amorphous polymer. Equilibrium values of Δωl and Δωt were obtained 20°C below the glass-transition temperature Tg determined at cooling rates of 20°C/hr. Comparison of the present results with previous ultrasonic data reveals a considerable dispersion in the longitudinal phonon velocity below Tg. The origin of the large transverse Brillouin intensities is related to the structure of polycarbonate.  相似文献   

12.
The electrical conductivity of polycrystalline MgO between 350 and 750°C is determined by the transport of surface electronic and hole defects and depends on the applied voltage. Near 620°C at low applied voltages, the conductivity decreases by 1–2 orders of magnitude in a narrow temperature range (ΔT = 75°C), and this is accompanied by a change of the sign of the surface charge carriers. The “ignition” of the catalytic activity of magnesium oxide in free radical generation in radical chain hydrocarbon pyrolysis is observed in the same temperature range. It is assumed that the change of the sign of the charge carriers is due to the existence of an isoelectric temperature T i and that, at T > T i , OO· defects come out to the magnesium oxide surface.  相似文献   

13.
The slow isothermal crystallization of concentrated amorphous starch systems is measured by Modulated Differential Scanning Calorimetry (MDSC). It can be followed continuously by the evolution (stepwise decrease) of the MDSC heat capacity signal (Cp), as confirmed with data from X-ray diffractometry, Dynamic Mechanical Analysis, Raman spectroscopy, and conventional Differential Scanning Calorimetry. Isothermal MDSC measurements enable a systematic study of the slow crystallization process of a concentrated starch system, such as a pregelatinized waxy corn starch with 24 wt % water and 76 wt % starch. After isothermal crystallization, a broad melting endotherm with a bimodal distribution is observed, starting about 10°C beyond the crystallization temperature. The bulk glass transition temperature (Tg) decreases about 15°C during crystallization. The isothermal crystallization rate goes through a maximum as a function of crystallization time. The maximum rate is characterized by the time at the local extreme in the derivative of Cp (tmax), or by the time to reach half the decrease in Cp (t1/2). Both tmax and t1/2 show a bell-shaped curve as a function of crystallization temperature. The temperature of maximum crystallization rate, for the system studied, lies as high as 75°C. This is approximately 65°C above the initial value of Tg. Normalized Cp curves indicate the temperature dependence of the starch crystallization mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2881–2892, 1999  相似文献   

14.
We have studied cross-linking and thermal degradation of high-performance first-and second-generation PMR-15 polyimides, both thermoset and thermoplastic versions, by performing nonspectroscopic NMR solid echo T*2 relaxation measurements at temperatures up to 430°C using probes built for this purpose. We employ signal averaging and automated decomposition of the relaxation decays into two Gaussian components, the slower of which gradually appears above 300°C. Tracking the molecular mobility spectrum in terms of the relative intensity of the components and their relaxation times as temperature is cycled, we detect essentially no irreversible effects below the glass transition, measure permanent mobility reductions attributable to completion of cure, and find that exposure to temperatures above 380°C on the order of 1 h is required for substantial thermal degradation to occur. These results are closely supported by thermal and mechanical measurements on parallel specimens. Second-generation PMR resins appear to have higher microscopic rigidity and reduced viscous fraction at high temperatures. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
Thin films of 3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexane carboxylate were UV irradiated (1.1 J cm-2) under isothermal conditions ranging from 0 to 50°C. Under these conditions the polymerization advanced quickly but only to a conversion level of less than 10% before the reaction rate slowed by more than an order of magnitude. This drop off in rate was not caused by the glass transition temperature, T g, reaching or exceeding the reaction temperature, T rxn, since the epoxide's T g remained at least 40°C below T rxn. Raising the sample temperature above 60°C caused a sharp increase in the conversion level. At 100°C conversion exceeds 80% and the ultimate T g approaches 190°C. The addition of 10 mass% 1,6-hexanediol, HD, to the epoxy caused the conversion at room temperature to quintuple over the level obtained without the alcohol present. The heat liberated from this alcohol epoxy blend during cure on a UV conveyor belt system caused the sample's temperature to increase by about 100°C above ambient whereas the epoxy alone under these conditions only experienced a modest temperature rise of about 26°C. If the amount of HD in the blend is increased above 10% the heat of reaction at 23°C decreases due to HD being trapped in a nonreactive crystalline phase. Boosting reaction temperatures above 50°C melts the HD crystals and yields significantly improved conversion ratios. As the level of alcohol blended with the epoxy is raised its ultimate T g is lowered and when the concentration of alcohol in the blend nears 30 mass%T g drops below room temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The regularities of chemical reactions in solid 8-hydroxyquinoline—chloramine B mixtures were studied under conditions of organic self-propagating high-temperature synthesis (SHS), isothermal reaction, and thermal explosion in the 20–220 °C temperature range. Comprehensive physicochemical analysis and microstructural study of the reaction products were carried out. The temperature of SHS initiation (58 °C), the heat of the reaction (129±9 kJ mol−1), the stoichiometric coefficient (1), the maximum temperature (T max=98–140 °C), and the velocity of SHS wave propagation (u=0.15–0.55 mm s−1) were determined. Depending on the ratio of the reactants (n), a low-temperature non-degeerate stable gasless mode (n≤1,T max=115 °C,E a=42 kcal mol−1) and a high-temperature mode (n>1,T max=140 °C,E a=0.4 kcal mol−1) are possible for SHS. The SHS affords monohydroxy and monochloro derivatives of 8-hydroxyquinoline, benzenesulfonamide, NaCl, NaOH, and H2O. The mechanism of the solid-phase reaction at temperatures below 58 °C includes surface, solid-phase, and gas-phase diffusion; that for SHS is capillary spreading of the hydroxyquinoline melt. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2271–2284, December, 1999.  相似文献   

17.
Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg − 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901–911, 1998  相似文献   

18.
A macrocyclic azocalix[4]arene (1) based ester derivative was synthesized. The single crystals of azocalix[4]arene were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma rays with a dose rate of 0.980 kGy h‐1 for 48 and 72 h to produce a stable free radical. Electron paramagnetic resonance (EPR) measurements were performed in three mutually perpendicular planes of the single crystal in the magnetic field, in addition, temperature dependence of the EPR signal was studied between 120 K and 450 K. The spectra were found to be temperature and angular dependent. Analysis based on the spectra recorded showed that a free radical was formed by fission of a C–H bond. This radical is described as ?CaHCbH3 The averages of the principal values of the hyperfine parameters and g‐factor are: g = 2.0034, AHa = 1.28 mT, AH1=H2 = 1.00 mT, and AH3 = 0.49 mT. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Elongational creep measurements were carried out on a biaxially oriented poly (ethylene terephthalate) (PET) film parallel to, orthogonal to, and at 45° to the principal optic axis. Measurements made after various thermal treatments which were intended to stabilize the physical state of the PET were shown to be ineffective. Samples were annealed at 140°C for 12 days and aged at 95°C for over 24 days before measurement without success. Thermal cycling between 41 and 91°C which was also employed to stabilize the mechanical response also failed. Significant deceleration of the creep rate caused by densification of amorphous regions of the samples during storage below the glass temperature Tg is illustrated. Because of physical aging below Tg and morphological changes occurring above Tg during the various thermal treatments and histories, time-scale shift factors were found to be not unique.  相似文献   

20.
The poly(p‐phenylene sulfide) (PPS) nonisothermal cold‐crystallization behavior was investigated in a wide heating rate range. The techniques employed were the usual Differential Scanning Calorimetry (DSC), and the less conventional FT‐IR spectroscopy and Energy Dispersive X‐ray Diffraction (EDXD). The low heating rates (Φ) explored by EDXD (0.1 K min?1) and FT‐IR (0.5–10 K min?1) are contiguous and complementary to the DSC ones (5–30 K min?1). The crystallization temperature changes from 95 °C at Φ = 0.05 K min?1 to 130 °C at Φ = 30 K min?1. In such a wide temperature range the Kissinger model failed. The model is based on an Arrhenius temperature dependence of the crystallization rate and is widely employed to evaluate the activation energy of the crystallization process. The experimental results were satisfactorily fit by replacing in the Kissinger model the Arrhenius equation with the Vogel–Fulcher–Tamann function and fixing U* = 6.28 k J mol?1, the activation energy needed for the chains movements, according to Hoffmann. The temperature at which the polymer chains are motionless (T = 42 °C) was found by fitting the experimental data. It appears to be reasonable in the light of our previously reported isothermal crystallization results, which indicated T = 48 °C. Moreover, at the lower heating rate, mostly explored by FT‐IR, a secondary stepwise crystallization process was well evidenced. In first approximation, it contributes to about 17% of the crystallinity reached by the sample. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2725–2736, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号