首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of trifluormethyl dichlorophosphine (CF3PCl2) with sodium telluride Na2Te or bis(trimethylsilyl) telluride (Me3Si)2Te results in the formation of four new phosphorus tellurium heterocycles ( 1–4 ) with the electron withdrawing CF3 substituent bonded to phosphorus. The telluratriphosphetane (CF3P)3Te ( 1 ), telluratetraphospholane (CF3P)4Te ( 2 ), telluradiphosphirane (CF3P)2Te ( 3 ) and ditelluratriphospholane (CF3P)3Te2 ( 4 ) are characterized by multinuclear (31P, 19F and 125Te) NMR spectroscopy. A full analysis of the 19F NMR spectrum of telluratriphosphetane (CF3P)3Te is presented. The new heterocycles are remarkably stable in solution and eliminate only slowly tellurium to form cyclophosphines (CF3P)n (n = 3–5).  相似文献   

2.
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te−O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te−O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center–containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4-oxatellurane LQ50 (IC50=4.1±1.0; SI=12), 1,2λ4-oxatellurolane LQ04 (IC50=7.0±1.3; SI=7) and 1,2λ4-benzoxatellurole LQ56 (IC50=5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 87. 1,2-Di-tert-butyl-3-iso-propyl-cylclotriphosphane, a Stable Mixed-substituted Cyclotriphosphane The first kinetically stable mixed-substituted cyclotriphosphane, 1,2-di-tert-butyl-3-iso-propyl-cyclotriphosphane, (PBut)2(PPri) ( 1 ), was synthesized by [2+1]-cyclocondensation of K(But)P–P(But)K with PriPCl2 in n-pentane. Mainly (PBut)4 as well as mixed-substituted cyclotetra- and cyclopentaphosphanes are formed as by-products. 1 could be isolated in a pure state by high vacuum distillation and was thoroughly characterized. It forms two diastereomers, the more stable of which with a cis-standing tert-butyl and iso-propyl group can be stored without decomposition under inert conditions at room temperature for several days. Through thermolysis of 1 beside other alkylcyclophosphanes the mixed-substituted cyclotetraphosphanes (PBut)2(PPri)2 ( 2 ) and (PBut)3(PPri) ( 3 ) are formed and their 31P NMR parameters are reported.  相似文献   

4.
3-[2-(3,5-Di-tert-butyl-4-hydroxyphenylsulfanyl)acetoxy]2,2-bis[2-(3,5-di-tert-butyl-4-hydroxyphenylsulfanyl) acetoxymethyl]propyl 3,5-di-tert-butyl-4-hydroxyphenylsulfanylacetate was synthesized. Its structure was determined by means of 1H and 13C NMR spectroscopy and X-ray-diffraction analysis. This compound was found to possess high antioxidant activity in the conditions of auto-oxidation of low-pressure polyethylene.  相似文献   

5.
5-(3,5-Di-tert-butyl-4-hydroxyphenyl)-1,2,3,5-tetrahydrophenazine was synthesized by the reaction of 2,6-di-tert-butyl-1,4-benzoquinone-4-(o-aminophenyl)imine with cyclohexanone. The structure of the reaction product was established by X-ray diffraction.  相似文献   

6.
Contributions to the Chemistry of Phosphorus. 129. Synthesis and Properties of the Phospha-germa-cyclobutanes (t-BuP)2(GePh2)2 and (t-BuP)3GePh2 The phospha-germa-cyclobutanes 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-1,2-diphospha-3,4-digerma-cyclob utane, (t-BuP)2(GePh2)2 ( 1 ), and 1,2,3-tri-tert-butyl-4,4-diphenyl-1,2,3-tri-phospha-4-germa-cyclobutan e, (t-BuP)3GePh2 ( 2 ), are obtained as main-products of the cyclocondensation of K(t-Bu)P? P(t-Bu)K with Ph2GeCl2 under certain reaction conditions. 1 and 2 could be isolated in the pure state and were clearly characterized as the first four-membered P2Ge2 and P3Ge heterocycles, respectively.  相似文献   

7.
2,6-Di-tert-butyl-4-(2-hydroxyethyl)phenol undergoes oxidative self-coupling by the action of K3Fe(CN)6 in alkaline medium at room temperature to give 7,9-di-tert-butyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-hydroxymethyl-2-oxaspiro[4.5]deca-6,9-dien-8-one. The composition of the reaction products has been determined, and the mechanism of their formation is discussed.  相似文献   

8.
1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-arylbenzimidazoles were synthesized by the condensation of 2,6-di-tert-butyl-p-benzoquinone imine with aromatic aldehydes. 2-(3,5-Di-tert-butyl-4-hydroxybenzylidene) benzimidazoles were synthesized by the reaction of 2-aminobenzimidazole with 2,6-di-tert-butyl-4-hydroxybenzaldehyde. The substances were characterized by elemental analysis, IR and NMR spectra. The electrochemical reduction and oxidation of these compounds and phenoxy radicals derived from them was studied by cyclic voltammetry. The stability of the studied phenoxy radicals was confirmed by the electron spin resonance method.  相似文献   

9.
Reaction of 3,6-di-tert-butyl-1,2-benzoquinone and 3,6-di-tert-butylcatechol withtert-butyl hydroperoxide in aprotic solvents leads to the generation of semiquinone (SQ.H), alkylperoxy (ROO.), and alkyloxy radicals. The reaction of SQ.H and ROO. produces 2,5-di-tert-butyl-6-hydroxy-1,4-benzoquinone, 3,6-di-tert-butyl-1-oxacyclohepta-3,5-diene-2,7-dione, and 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinone. The radical generated from solvent attacks SQ.H at position 4 with C−C bond formation. 4-Benzyl-2,5-di-tert-butyl-6-hydroxycyclohexa-2,5-diene-1-dione produced in this way is transformed into 4-benzyl-3,6-di-tert-butyl-1,2-benzoquinone under the reaction conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 943–946, May, 1999.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 101 Synthesis and Properties of Diphosphaboriranes (t-BuP)2BNR2 and (t-BuP)2BNR1R2 The reaction of K(t-Bu)P? P(t-Bu)K with diorganylaminodichloroboranes under suitable conditions leads to the new 1,2-di-tert-butyl-3-diorganylamino-1,2,3-diphosphaboriranes (-1,2-diphospha-3-boracyclopropanes) (t-BuP)2BNR2 ( 2 , 7 ) and (t-BuP)2BNR1R2 ( 3 — 6 ), respectively. The P2B three-membered heterocycles 2 — 5 can be isolated in good yields. They are relatively stable against dimerization to the corresponding phosphorus boron six-membered ring compounds with opposite boron atoms. The rate of dimerization depends on steric and electronic influences of the substituents at the three-membered ring. All NMR spectroscopic results are only consistent with a structure in which the B and N atoms show planar coordination and are connected by a partial double bond.  相似文献   

11.
The O?H bond dissociation energy (D O?H) has been determined for eight alkylseleno-substituted phenols, one alkyltelluro-substituted phenol, and one alkyltelluro-substituted pyridinol. D O?H has been estimated by the intersecting-parabolas method from kinetic data using five reference compounds: α-tocopherol (D O?H = 330.0 kJ/mol), 3,5-di-tert-butyl-4-methoxyphenol (D O?H = 347.6 kJ/mol), 4-methylphenol (D O?H = 361.6 kJ/mol), 2,6-di-tert-butyl-4-methylthiophenol (D O?H = 336.3 kJ/mol), and 2,6-di-ter-tbutyl-4-methylphenol (D O?H = 338.0 kJ/mol). The following D O?H values (kJ/mol) have been obtained: 335.9 for 2,5,7,8-tetramethyl-2-phytyl-6-hydroxy-3,4-dihydro-2H-1-benzoselenopyran, 342.6 for 2-methyl-5-hydroxy-2,3-dihydrobenzoselenophene, 333.5 for 2,4,6,7-tetramethyl-5-hydroxy-2,3-dihydrobenzoselenophene, 339.4 for 2-tert-butyl-4-methoxy-6-octylselenophenol, 357.9 for dodecyl 3-(4-hydroxyphenyl) propyl selenide, 348.5 for dodecyl 3-(3,5-dimethyl-4-hydroxyphenyl)propyl selenide, 350.9 for dodecyl 3-(3-tert-butyl-4-hydroxyphenyl)propyl selenide, 338.0 for dodecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propyl selenide, 343.0 for 2,6-di-tert-butyl-4-(tellurobutyl-4′-phenoxy)phenol, and 338.8 for 6-octyltelluro-3-pyridinol. The stabilization energies of phenoxyl radicals containing R substituents (X = O, S, Se, Te) have been compared.  相似文献   

12.
Acyl- and Alkylidenephosphines. XXIV. (N,N-Dimethylthiocarbamoyl)trimethylsilyl-phosphines and 1.2-Di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilylsulfano-1λ5, 2λ3-diphosphet-3-ene In contrast to bis(trimethylsilyl)phosphines R? P[? Si(CH3)3]2 1 {R ? H3C a ; (H3C)3C b ; H5H6 c ; H11C9 d ; (H3C)3Si e }, the more nucleophilic lithium trimethylsilylphosphides 4 react with N,N-dimethylthiocarbamoyl chloride already at ?78°C to give (N,N-dimethylthiocarbamoyl)trimethylsilylphosphines 2 . Working up the reaction, a dismutation of the mesityl derivative 2d is observed, whereas the tert-butyl compound 2b dissolved in toluene, eliminates dimethyl(trimethylsilyl)amine to form 1,2-di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilyl-sulfano- 1λ5, 2λ3-diphosphet-3-ene 6b , nearly quantitatively within several days at +20°C.  相似文献   

13.
Metal Derivatives of Molecular Compounds. IV Synthesis, Structure, and Reactivity of Lithium [Tris(trimethylsilyl)silyl]tellanide · DME Lithium tris(trimethylsilyl)silanide · 1,5 DME [3] and tellurium react in 1,2-dimethoxyethane to give colourless lithium [tris(trimethylsilyl)silyl]tellanide · DME ( 1 ). An X-ray structure determination {-150 · 3·C; P21/c; a = 1346.6(4); b = 1497.0(4); c = 1274.5(3) pm; β = 99.22(2)·; Z = 2 dimers; R = 0.030} shows the compound to be dimeric forming a planar Li? Te? Li? Te ring with two tris(trimethylsilyl)silyl substituents in a trans position. Three-coordinate tellurium is bound to the central silicon of the tris(trimethylsilyl)silyl group and to two lithium atoms; the two remaining sites of each four-coordinate lithium are occupied by the chelate ligand DME {Li? Te 278 and 284; Si? Te 250; Li? O 200 pm (2X); Te? Li? Te 105°; Li? Te? Li 75°; O? Li? O 84°}. The covalent radius of 154 pm as determined for the DME-complexed lithium in tellanide 1 is within the range of 155 ± 3 pm, also characteristic for similar compounds. In typical reactions of the tellanide 1 [tris(trimethylsilyl)silyl]tellane ( 2 ), methyl-[tris(trimethylsilyl)silyl]tellane ( 4 ) and bis[tris(trimethylsilyl)silyl]ditellane ( 5 ) are formed.  相似文献   

14.
Chlorination of 3,6-di-tert-butyl-1,2-benzoquinone in a two-phase catalytic system (CH2Cl2, HCl- H2O, H2O2, Bu4NCl) led to halogen addition at the C=C bond, and subsequent dehydrochlorination of the adduct gave 3,6-di-tert-butyl-4-chloro-1,2-benzoquinone. Chlorination of the latter afforded 3,6-di-tert-butyl-4,5-dichloro-1,2-benzoquinone.  相似文献   

15.
Dialkyl [(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl]phosphonates reacted with phenol and benzenediols in the presence of trifluoromethanesulfonic acid to give products of electrophilic substitution in the benzene ring, the corresponding diarylmethylphosphonates or [phenylenebis(arylmethylene)]- diphosphonates. The reaction of diphenyl [(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl]phosphonate with 2-methylbenzene-1,3-diol at a ratio of 1: 1 afforded 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-hydroxy-7-methyl-2-phenoxy-2,3-dihydro-1,2λ5-benzoxaphosphol-6-one.  相似文献   

16.
Reaction of 3,5-di-tert-butyl-1,2-benzoquinone with 5-amino-4-chloroquinolines gave derivatives of a new fused heterocyclic system, substituted quinolino[4,5-bc][1,5]benzoxazepines. The molecular structure of 9,11-di-tert-butyl-2,4,6-trimethyl-7H-quinolino[4,5-bc][1,5]benzoxazepine was determined by X-ray analysis. 3,5-Di-tert-butyl-1,2-benzoquinone reacted with o-nitro-, o-acyl-, and o-methoxycarbonylanilines and some amino-substituted nitrogen-containing heterocycles to form the corresponding sterically hindered N-aryl-(hetaryl)-o-aminophenols. Di-tert-butyl-substituted phenoxazines were obtained as a result of thermal cyclization of intermediately formed quinone imines.  相似文献   

17.
Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

18.
Acyl-and Alkylidenephosphines. XXVI. 2, 4-Bis (phenylimino)-1, 3-diphosphetanes from Thiocarbamoyl- and Carbamoyltrimethylsilylphosphines . Bis(trimethylsilyl)phosphines R? P[? Si(CH3)3]2 1 (R = H3C a, H5C6 b, (H3C)3C e, H11C9 d) and phenyl isothiocyanate give insertion compounds which were identified as [CN-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphines 3 ? 2 in solution as well as in the solid state [2]. In the presence of small amounts of solid sodium hydroxide the phenyl derivative 3 ? 2b eliminates bis(trimethylsilyl) sulfane, whereas the tert-butyl 3 ? 2c and the mesityl compound 3 ? 2d show the same reaction even without a catalyst. The unstable [(phenylimino)methylidene]phosphines 6 formed first, dimerize rapidly to give 2, 4-bis(phenylimino)-1,3-diphosphetanes 7 which in solution exist as mixtures of the E and Z isomers. Via a NaOH-catalyzed elimination of hexamethyldisiloxane these cyclic phosphines 7 can also be obtained from the adducts of phenyl isocyanate and bis(trimethylsilyl)phosphines 1. Taking the thermally sufficiently stable tert-butyl derivative 7 c as an example, the temperature dependence of n.m.r. spectra is discussed in detail.  相似文献   

19.
2,3-Di-O-pentyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin has been evaluated as an enantioselective stationary phase for capillary gas chromatography. Experimental results show a good enantioselectivity towards compounds with different functional groups (haloalkanes, alcohols, esters, terpenoids, amino acid derivatives, and heterocycles). Column stability improves mixing the chiral phase with polysiloxane SE-54 (1 : 1).  相似文献   

20.
Contributions to the Chemistry of Phosphorus. 106. Synthesis and Properties of the Diphosphacyclopropane (t-BuP)2CHMe The new 1,2-di-tert-butyl-3-methyl-1,2-diphosphacyclopropane (1,2-di-tert-butyl-3-methyl-diphosphirane), (t-BuP)2CHMe ( 1 ), is obtained by reacting K(t-Bu)P? P(t-Bu)K with 1,1-dichloroethane under suitable conditions. 1 can be isolated by high vacuum distillation and is stable for months when stored under inert gas at room temperature. Particularly, no dimerization to the corresponding 1,2,4,5-tetraphosphacyclohexane takes place. The NMR parameters indicate an increase of the exocyclic bond angles compared to (t-BuP)2CH2. The signs of all CP coupling constants have been determined by spin tickling experiments. The 2J(CCP)-coupling of the methyl group at the ring carbon depends strongly on the dihedral angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号