首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer-supported Ziegler–Natta catalysts based on various polymer carriers were synthesized by different methods, including (1) loading TiCl4 directly onto the polymer supports; (2) loading TiCl4 onto the polymer supports modified by magnesium chloride (MgCl2); (3) loading TiCl4 onto the polymer supports modified by Grignard reagent (RMgCl); and (4) loading TiCl4 onto the polymer supports modified by magnesium alkyls (MgR2). The activity and kinetic features of the catalysts for ethylene polymerization were examined. Among the combinations tested, the best was found to be TiCl4/n-Bu2Mg.Et3Al/poly(ethylene-co-acrylic acid) (92:8), which produced a catalyst of very high activity for ethylene polymerization. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Factors affecting the particular shape of kinetic rate–time profiles in the polymerization of ethylene with a MgCl2-supported TiCl4 catalyst activated by Al(C2H5)3 have been investigated. Examination of the dependence of the polymerization rate on the concentration of Al(C2H5)3 resulted in a Langmuir–Hinshelwood rate law. Analysis of the polymerization rate as a function of the polymerization temperature gave about 46 kJ mol?1 for the overall activation energy. Examination of the rapid decay of the polymerization rate with time showed that this decay is represented better by a first-order decay law than by a second-order one. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The polymerization of 4-phenyl-1-butyne was carried out using metathesis and Ziegler-Natta catalysts. Especially, the Fe(acac)3-AlEt3 catalyst with toluene as a solvent produced an extremely high molecular weight polymer of Mw ≈ 106. Solubility of the polymers at room temperature in organic solvents such as benzene, toluene, dichloromethane, chloroform, and THF was excellent despite their high molecular weights. It has been indicated that the polymer prepared by the Fe(acac)3-AlEt3 catalyst is of cis form with a high stereoregularity. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The polymerization of 4-vinyl-1-cyclohexene (4VCHE) with Ziegler–Natta catalysts was studied. The polymerization of 4VCHE by the vinyl group took place with TiCl3–aluminum alkyls catalysts, while vinylene group of 4VCHE did not participate in the reaction, but it affected the polymerization rate of 4VCHE. The effects of aluminum alkyl and type of TiCl3 on the polymerization were examined. The overall activation energy for the polymerization was estimated to be 41.9kJ/mol. Monomer-isomerization copolymerization of 4VCHE and trans-2-butene occurred with the TiCl3-(i-C4H9)3Al catalyst to give copolymers consisting of 4VCHE and 1-butene units.  相似文献   

5.
A novel polymer-supported titanium-based catalyst shows high activity and nondecaying kinetic profiles for ethylene polymerization. The presence of 1-hexene comonomer drastically increases the catalyst activity, exhibiting a similarity to the MgCl2-supported catalysts. However, the nondecaying kinetic profiles of copolymerization distinguish this catalyst from the latter. Infrared analysis indicates that the transition metals were immobilized on the polymer support via functional groups. The effects of polymerization conditions on catalyst activity have been assessed. Characterization of the resulting polymer product by means of 13C-NMR, DSC, and SEM demonstrates a branch-free structure with high melting point, high crystallinity, and high molecular weight for the ethylene homopolymer. The reactivity ratios of ethylene-1-hexene copolymerization are evaluated from 13C-NMR analysis data. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Polymerization of five monomers, 1-[p-(trans-4′-alkylcyclohexyl)phenoxy]alkyne (i.e., PCH001A, where PCH, 0, 01 and A represent phenylcyclohexyl mesogenic moiety, number of carbon in an alkyl group attached to cyclohexyl group, ether linkage + number of methylenic units in the spacer between phenoxy and acetylenic groups, and terminal acetylene, respectively) were carried out using Ziegler-Natta and metathesis catalysts. All polymers were soluble in organic solvents such as benzene, chloroform, and THF. A liquid crystalline phase was observed in the polymers of PCH303A and PCH503A through the polarized optical microscope and DSC measurements. Polymerization of PCH003A by the Fe(acac)3-AlEt3 catalyst yielded a high-molecular-weight polymer with Mw = ca. 3 × 106. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The Ziegler–Natta‐catalyzed polymerization of 1,3‐butadiene was investigated at a low aluminum alkyl/cobalt (Al/Co) ratio using two different soluble catalyst systems: cobalt(II) octanoate/diethylaluminum chloride/water and cobalt(II) octanoate/methylaluminoxane/tert‐butyl chloride. When the active‐center concentration was determined by the number‐average molecular weight technique, it was found that the percentage of active cobalt depended on the Al/Co ratio. Subsequently, an equilibrium reaction was proposed to be Co + 2Al ? CoAl2, where Co is cobalt(II) octanoate, Al is either of the aluminum alkyl‐activator species, and CoAl2 is the active catalyst. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2256–2261, 2001  相似文献   

8.
The amount of dibutylmagnesium (DBM) or triethylaluminum (TEAL) that reacted with silica at 55–60°C depended on the silica calcining temperature. Lower silica calcining temperatures resulted in more Mg or Al fixed to the silica surface, indicating greater amounts of DBM or TEAL reacting with the silica. The amount of the metal alkyls butyl(octyl) magnesium ethoxide, ethylaluminum dichloride, tri-n-hexylaluminum, and diethyl(ethyldimethylsilanolato) aluminum that reacted with 600°C calcined silica was also determined. The metal alkyl can react with the silica at two sites, a surface hydroxyl group and a siloxane group. The silica surface hydroxyl groups can be chemically converted to trimethylsilyl groups so that only the siloxane groups are available for attack. After the metal alkyl was reacted with silica, the resulting intermediate was treated with titanium tetrachloride to yield an ethylene polymerization catalyst in the presence of TEAL. When no metal alkyl was employed, titanium tetrachloride reacted only with the silica surface hydroxyl groups to yield a weakly active ethylene polymerization catalyst.  相似文献   

9.
The use of a polyethylene-based copolymer with dual functional groups (polyethylene-gr-2-tert-butyl amino ethyl methacrylate) as the support for TiCl4 catalyst in ethylene polymerization was studied. Different methods for treating the support were examined and treatment with BuMgCl was found to be the most effective. With the BuMgCl-modified support, a 12-run Plackett-Burman design was used to screen 11 factors in catalyst preparation. Statistical analysis of the results from this design identified significant factors with the amount of BuMgCl singled out to be the most important one for the four response variables of interest, Mg loading, Ti loading, catalyst activity per gram catalyst, and catalyst activity per gram Ti. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
This paper presents an experimental kinetic study of the polymerization of propylene in liquid monomer with a high activity catalyst. The influences of the concentration of hydrogen and the molar ratios of the catalyst, cocatalyst, and electron donor on the activation period, the maximum activity, the yield, and the decay behavior have been investigated at a temperature of 42°C using a relatively simple kinetic model. On the basis of the experimental data, the reaction rate has been modeled as a function of the hydrogen concentration, the molar ratio of cocatalyst and titanium, and the molar ratio of the electron donor and the cocatalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 219–232, 1999  相似文献   

11.
The surface composition of TiCl3-based Ziegler—Natta catalysts prepared by various methods was analyzed by ESCA to correlate the total amount of surface titanium with the catalyst activity in propylene polymerization. The ESCA peak ratio (Ti 2P3/2/Cl 2P) of the catalysts was measured to estimate the surface composition. The titanium index defined as the product of the (Ti/Cl peak ratio and surface area) was closely correlated with the catalyst activity in polymerization. This indicates that surface titanium concentration and surface area determine the catalyst activity. It was also found that removal of surface aluminum and chlorine at the catalyst preparation stage results in concentration of titanium at the surface and an increase in surface area.  相似文献   

12.
Kinetics of ethylene homopolymerization reactions and ethylene/1-hexene copolymerization reactions using a supported Ziegler–Natta catalyst was carried out over a broad range of reaction conditions. The kinetic data were analyzed using a concept of multicenter catalysis with different centers that respond differently to changes in reaction parameters. The catalyst contains five types of active centers that differ in the molecular weights of material they produce and in their copolymerization ability. In ethylene homopolymerization reactions, each active center has a high reaction order with respect to ethylene concentration, close to the second order. In ethylene/α-olefin copolymerization reactions, the centers that have poor copolymerization ability retain this high reaction order, whereas the centers that have good copolymerization ability change the reaction order to the first order. Hydrogen depresses activity of each type of center in the homopolymerization reactions in a reversible manner; however, the centers that copolymerize ethylene and α-olefins well are not depressed if an α-olefin is present in the reaction medium. Introduction of an α-olefin significantly increases activity of those centers, which are effective in copolymerizing it with ethylene but does not affect the centers that copolymerize ethylene and α-olefins poorly. To explain these kinetic features, a new reaction scheme is proposed. It is based on a hypothesis that the Ti—C2H5 bond in active centers has low reactivity due to the equilibrium formation of a Ti—C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4255–4272, 1999  相似文献   

13.
The hydrogen activation effect in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts is usually explained by hydrogenolysis of dormant active centers formed after secondary insertion of a propylene molecule into the growing polymer chain. This article proposes a different mechanism for the hydrogen activation effect due to hydrogenolysis of the Ti? iso‐C3H7 group. This group can be formed in two reactions: (1) after secondary propylene insertion into the Ti? H bond (which is generated after β‐hydrogen elimination in the growing polymer chain or after chain transfer with hydrogen), and (2) in the chain transfer with propylene if a propylene molecule is coordinated to the Ti atom in the secondary orientation. The Ti? CH(CH3)2 species is relatively stable, possibly because of the β‐agostic interaction between the H atom of one of its CH3 groups and the Ti atom. The validity of this mechanism was demonstrated in a gas chromatography study of oligomers formed in ethylene/α‐olefin copolymerization reactions with δ‐TiCl3/AlEt3 and TiCl4/dibutyl phthalate/MgCl2–AlEt3 catalysts. A quantitative analysis of gas chromatography data for ethylene/propylene co‐oligomers showed that the probability of secondary propylene insertion into the Ti? H bond was only 3–4 times lower than the probability of primary insertion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1353–1365, 2002  相似文献   

14.
A fragmentable support material for Ziegler–Natta catalysts is presented based on micrometer‐sized aggregates of polystyrene nanoparticles. Hydroxyl anchoring groups are introduced by copolymerization of hydroxymethylstyrene in emulsion process to immobilize the catalysts. The catalytic activity in ethylene slurry polymerizations is found to be directly correlated to the hydroxyl group content of the supports. Furthermore, the fragmentation behavior of dye‐labeled support aggregates into the initial nanoparticles is demonstrated using laser scanning confocal fluorescence microscopy as a nondestructive method. These supported catalysts fulfill two important design criteria, high fragmentability and high catalyst loading, and produce high‐density polyethylene with medium molecular weight distributions (MWDs = 3–4). These values lie between those obtained using single‐site metallocene‐based (narrow MWD < 3) or inorganic supported multi‐site Ziegler–Natta‐based (broad MWD = 4–12) polymerizations without the need of blending. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 15–22  相似文献   

15.
Polymerization of vinylcyclohexane (VCHA) with TiCl3–aluminum alkyl catalysts was investigated. The polymerization rate of VCHA was low due to the branch at the position adjacent to the reacting double bond. The effects of aluminum alkyl on the polymerization and monomer-isomerization were observed; the polymer yield decreased in the following order: (CH3)3Al > (i–C4H9)3Al > (C2H5)3Al. Isomerization of VCHA was observed with the TiCl3–(i–C4H9)3Al and the TiCl3–(C2H5)3Al catalysts during the polymerization, while with the TiCl3–(CH3)3Al catalyst such isomerization was not observed. Monomer-isomerization copolymerization of VCHA and trans-2-butene took place to give copolymers consisting of VCHA and 1-butene units.  相似文献   

16.
Spherical MgCl2 adducts used as supports for a Ziegler–Natta catalyst for olefin polymerization were prepared by the general precipitation method. The influence of MgCl2/EtOH (mol/mol) and the dispersion speeds on the particle size (PS) and particle size distribution (PSD) were investigated. It was found that the former played a trivial role in controlling the PS and PSD, and the latter was the key factor. In particular, the influence of ethanol on the crystal structure was further examined, with consideration given to the performance of the supported Ziegler–Natta catalyst. It was believed that the reactions between MgCl2 and ethanol had a controlling effect on the destruction of the original anhydrous MgCl2, which was the key point in the preparation of suitable supports for the latest generation Ziegler–Natta catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3112–3119, 2002  相似文献   

17.
In the present article, a novel hollow spherical lignin‐supported vanadium‐based Ziegler–Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the lignin through the SEM‐EDX analysis. The resultant catalyst was investigated in ethylene polymerization and found to exhibit remarkable catalytic activity upon activation with ethylaluminium sesquichloride cocatalyst and ethyl trichloroacetate activator. During the polymerization, the lignin was gradually exfoliated by the polymerization force arising from the propagation of ethylene chain. The resultant PE/lignin nanocomposites preformed higher thermal stability compared to virgin PE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Chemical treatments of classical supported Ziegler–Natta precatalysts were conducted by using additional bulky ligands to attempt to narrow and homogenize the active sites distribution in propylene polymerization. Additions of monodentate ligands such as bis(trimethylsilyl)amide, cyclopentadienyl derivates or triphenylsilanol were seen to slow down the polymerization without modifying the distribute properties of polypropylenes. In the case of multidentate ligands (porphines or biquinolines), in addition to the poisoning of active sites, an extraction of titanium from the catalyst surface is observed. A decrease of both melting point and isotacticity (II%) of polymers using these compounds suggest that the most isospecific titanium sites are first extracted from the MgCl2‐surface. The narrowing of the molecular weight distribution confirms that the highly isospecific sites are the most active sites, producing the higher molecular weight polymers. Moreover, this study shows that the distributed properties of polymers are due to the chemical diversity of the active sites with various steric and electronic environments at the catalyst surface and not to mass transfer limitations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3941–3948, 2007  相似文献   

19.
Titanium tetrachloride heterogenized on reduced TiO2 has been studied as a catalyst for ethylene polymerization. The catalyst has good storage stability and exhibits good activity for ethylene polymerization. The polymer chains grow linearly during ca. 1 h, giving an average molecular weight of up to 2.5 × 106 which indicates that practically no β-elimination occurs. The activity of the catalyst at 50°C, based on Ti(III), is 7.6 × 106 PE/mol Ti h bar and based on the quantity of polyethylene formed it is 1.25 × 106 g PE/mol Ti h bar. The molecular weight of the polymer can be controlled with the addition of hydrogen, under 0.5 bar hydrogen, polyethylene with a molecular weight of 411,000 and a relatively low polydispersity index of 2.2 is obtained. The catalyst shows good thermal stability; the Arrhenius activation energy is 31.8 kJ/mol for the polymerization. The catalyst is also active for propylene polymerization, giving 3 × 106 g PP/mol Ti h bar with the high isotacticity of 93%. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit several features which differentiate them from polymerization reactions of α-olefins: a relatively low ethylene reactivity, higher polymerization rates in the presence of α-olefins, a high reaction order with respect to ethylene concentration, and strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions (see ref. 1 ) provided the basis for a new reaction scheme which explains all these features by postulating the equilibrium formation of a Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts that the β-agostically stabilized Ti C2H5 groups can decompose in the β-hydride elimination reaction with expulsion of ethylene and the formation of a Ti H bond even in the absence of hydrogen in the reaction medium. If D2 is used as a chain transfer agent instead of H2, the mechanism predicts the formation of deuterated ethylene molecules, which copolymerize with protioethylene. To prove this prediction, several ethylene homopolymerization reactions were carried out with a supported Ziegler–Natta titanium-based catalyst in the presence of large amounts of D2. Analysis of gaseous reaction products and polymers confirmed the formation of several types of deuterated ethylene molecules and protio/deuterioethylene copolymers, respectively. In contrast, a metallocene catalyst, Cp2ZrCl2 MAO, does not exhibit these kinetic features. In the presence of deuterium, it produces only DCH2 CH2 (CH2 CH2)x CH2 CH2D molecules. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4273–4280, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号